505 17TH STREET 2ND FLOOR OAKLAND, CA 94612 510.251.8210 WWW.UP-PARTNERS.COM

MEMORANDUM

DATE: October 3, 2016

To: Catherine Payne Planner IV Bureau of Planning City of Oakland (City)

FROM: Lynette Dias, AICP, Principal Hayley Cox, Associate Planner P. 510.251.8210 E. Idias@up-partners.com hcox@up-partners.com

RE: CEQA Compliance for Requested Major Variance for MacArthur Station¹ Parcel A and Parcel C-1 FDPs

Prior Approved FDPs and Current Proposal

In accordance with the Standard Conditions of Approval for the MacArthur Station² (MS) Project PUD/PDP and the terms of the Development Agreement, the City received an application for two Final Development Plans (FDPs) for Parcel A and Parcel C-1 that were approved by the Oakland City Council on May 19, 2015. The City is currently in receipt of an application for a Major Variance for the Parcel A/Phase 3 and Parcel C-1/Phase 4 FDPs in regard to the amount of retail space provided and the use of retail space identified in the approved FDPs.

1. Parcel A

The Parcel A/Phase 3 portion of the FDP is located within the block bounded by 40th Street, Telegraph Avenue, 39th Street and Frontage Road, adjacent to the MacArthur BART Station. The approved Parcel A FDP included 287 apartment residential units and 22,287 square feet of ground floor retail.³ As shown in Attachment A, the current proposed plans for Parcel A (comprised of Building A1 and Building A2) include minor revisions to the FDP-approved retail space allotment. The interior flex space along the mews in the FDP has been removed from

¹ The Project was previously called the MacArthur Transit Village Project.

² See note 1 above.

³ An alternative development program for Parcel A, which would accommodate a grocery store was also approved but is not currently considered. The alternative plan includes 292 residential units, 33,983 square feet of ground-floor commercial space including approximately 22,287 square feet for a grocery store.

To: Catherine Payne DATE: October 3, 2016 PAGE: 2

Buildings A1 and A2 and the residential lobby in Building A1 has been downsized to incorporate additional retail. Additionally, along the northern portion of Building A2, the bicycle storage area has been converted to retail space. Bicycle parking has been relocated to the southern portion of Building A2, where the residential lobby and leasing space has also been adjusted, and community space has been incorporated at the corner of 39th Street and Telegraph Avenue.

The Major Variance application proposes that, should the developer not be able to lease the space to retail tenants within a certain timeframe, the retail space along 40th Street be converted to live/work units. The developer would market the approximately 4,631 square feet of convertible retail space in Building A1 and the approximately 7,563 square feet of convertible retail space along 40th Street in Building A2—totaling 12,194 square feet—as retail space during the period starting on the commencement of construction and ending nine (9) months after the completion of construction for the applicable building. This is currently anticipated to be thirty-three (33) months of active leasing. In the event developer is unable to lease all or any portion of such convertible retail space to suitable retail tenants on commercially reasonable terms during the described leasing period, the unleased space could be converted to live/work units.

In addition, the applicant proposes to market the approximately 2,200 square feet of convertible retail space located in the interior of Building A2 along the mews as retail space for a period of eighteen (18) months, starting with the commencement of construction of Building A2. In the event that the developer is unable to lease all or any portion of such space to suitable retail tenants on commercially reasonable terms during the initial 18 months of construction, the unleased space would be converted to live/work units or resident-serving amenity space. If all of the above-described retail space—a total of 14,394 square feet—were not leased and were converted, this would represent an approximately 65 percent reduction in the amount of retail approved in the Parcel A/Stage 3 FDP. The converted space could result in approximately seven live/work units.

In addition to adjustments to retail space provision and use for Parcel A/Phase 3, driveway locations have been modified. Vehicular entry to the ground level parking garage on Parcel A would be from 39th Street and from Telegraph Avenue. This driveway would be located toward the center of the south side of the Building A2, on the north side of 39th Street, and has moved slightly eastward from its location in the Parcel A/Stage 3 FDP. The second driveway, located adjacent to the first driveway on 39th Street in the Parcel A/Stage 3 FDP, would now be located on Telegraph Avenue. This driveway would lead to the underground parking garage.⁴

⁴ An analysis by Nelson\Nygaard, dated July 26, 2016, (included as Attachment B) found that this scenario provides sufficient residential and retail parking, and the proposed parking supply falls within the minimum and maximum parking requirements for both residential and retail use per the prior FDP and TDM Plan requirements. Consistent with the requirements of the Final TDM, a minimum of 30 percent of the parking spaces will be unbundled and any unbundled parking not leased by residents will be made available to commercial tenants or BART patrons.

TO:Catherine PayneDATE:October 3, 2016PAGE:3

2. Parcel C-1

The Parcel C-1/Phase 4 component of the FDP is located on the portion of the MacArthur Station site south of 39th Street and east of Turquoise Way just north of Parcel D/Phase 2, an affordable residential project (the Mural Apartments). The proposed Parcel C-1 portion of the FDP includes 96 apartment residential units and 1,202 square feet of ground-floor retail. The applicant does not propose any significant changes to the Parcel C-1 FDP.

CEQA Discussion

As described above and summarized in Table 1 below, changes to the design of the approved development for Parcels A and C-1 would be minimal, and would relate mainly to retail space. Overall, total retail space would be reduced from the approved Parcel A and C-1 FDPs by approximately 2,000 square feet. Additionally, the Major Variance would allow for up to approximately 65 percent of the retail approved in the Parcel A/Stage 3 FDP (approximately 70 percent of the retail space provided in current proposed design of the Parcel A buildings) to be converted to live/work units if not leased within a certain time period.

Retail Space Approved in FDPs	
Parcel A	22,287
Parcel C-1	1,202
Total Retail Space Approved in FDPs	23,489
Retail Space Provided Per Current Design	
Retail Building A1 (South)	5,920
Retail Building A1 (North)	4,631
Retail Building A2 (40th St)	7,563
Retail Building A2 (Mews)	2,220
Retail Parcel C-1	1,100
Total Retail Space Per Current Design	21,434
Community Space	3,886
Total Retail Space Approved at FDP	23,489
Less Retail Space Provided Per Current Design	(21,434)
Total Reduction From Approved FDP	2,055

TABLE 1 RETAIL APPROVED UNDER PARCEL A AND C-1 FDPs COMPARED TO CURRENT DESIGN

Source: BRIDGE Housing and Urban Planning Partners, 2016.

ADMINISTRATIVE DRAFT

To: Catherine Payne DATE: October 3, 2016 PAGE: 4

Given that retail space is reduced in the current proposed design, there would be no new vehicle trips generated. If retail space were converted to live/work space, that space would retain much of its retail quality and would not result in a significant shift in land use. The current design, therefore, would not result in more severe impacts in regard to transportation—the main topic area of concern under CEQA when considering changes in land use at this site—than contemplated in the 2008 EIR. None of the requested changes, therefore, are substantial or significant under CEQA. Further, project circumstances have not changed since Parcel A and C-1 FDP approvals in 2015, and there is no new information of substantial importance that was not known at the time of the 2015 FDP approvals and their accompanying CEQA analysis.

Conclusion

Urban Planning Partners reviewed the requested Major Variance and other modifications to the FDP and found that there: (1) are no substantial project changes, (2) are no substantial changes in the project circumstances, and (3) is no new information of substantial importance, which could not have been known with the exercise of reasonable diligence when the 2008 EIR was certified, that would require major revisions of the certified 2008 EIR because of a new significant effect or an increase in the severity of a previously identified significant effect. Under CEQA section 21166 and CEQA Guidelines sections 15162 and 15163, no further environmental review is required.

Attachments

Attachment A – Approved FDP vs Proposed Changes Attachment B – Nelson\Nygaard Parking Memorandum

ADMINISTRATIVE DRAFT

Ankror	Moisan
6720 SW MACADAM AV PORTLAND, OR 97219 T 503.245.7100 117 SOUTH MAIN STRE SEATTLE, WA 98104 T 206.576.1600	VENUE, SUITE 100 ET, SUITE 400
© ANKROM MOISAN A	RCHITECTS, INC.
TIPPING MAR <u>STRUCTURAL</u> 1906 SHATTUCK AVE BERKELEY, CA 94704 T 510.549.1906	
SANDIS <u>CIVIL</u> 636 9TH ST OAKLAND, CA 94607 T 510.590.3415	
MILLER COMPANY LANDSCAPE 1585 FOLSOM ST SAN FRANCISCO, CA 941 T 415.252.7288	1 LANDSCAPE
MACARTHUR STATION BLOCKS A & C1 40TH AND TELEGRAPH OAKLAND, CA	BRIDGE HOUSING
OVERVIEW & C1	V PARCELS A
FINAL DE	
PACKAGE	
DATE 04.09.2015	

)) (1) (2) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
2 (A 3.04)		
)		
ADA STALL	PROJECT 64	

6720 SW MACADAM AVI PORTLAND, OR 97219 1 5032457100 117 SOUTH MAIN STREE SEATTLE, WA 98104 7 206576.1600 © ANKROM MOISAN AR TIPPING MAR STRUCTURAI 1990 SHATTUCK AVE BERKELEY, CAS 4704 T 510.549.1906 SANDIS	INUE, SUITE 100 ENUE, SUITE 100 ET, SUITE 400 CHITECTS, INC.
636 9TH ST OAKLAND, CA 94607 T 510.590.3415 MILLER COMPANY	LANDSCAPE
LANDSCAPE 1585 FOLSOM ST SAN FRANCISCO, CA 9410 T 415.252.7288	33
MACARTHUR STATION BLOCKS A & C1 40TH AND TELEGRAPH OAKLAND, CA	BRIDGE HOUSING
PARCEL C MEZZANIN	1 GROUND & NE LEVELS
FINAL DEV PACKAGE	/ELOPMENT
DATE 04.09.2015 PROJECT NUMBER 142010 SCALE 1/16" = 1'-0"	REVISION SHEET NUMBER A 2.20

No Proposed Changes to Site Plan from Parcel C-1 FDP

ATTACHMENT A

DATE 04.20.2016 PROJECT NUMBER 142010 SCALE 1/16" = 1'-0" A 2.20

PARCEL C1

HINES

GROUND & MEZZ

DEVELOPMENT SET

M E M O R A N D U M

To: Kevin Chow From: Jessica Alba Date: July 26, 2016

Subject: MacArthur Station Parking Implementation – Initial Study

INTRODUCTION

Nelson\Nygaard developed the Transportation Demand Management (TDM) Plan for the MacArthur Transit Village in 2010. The TDM Plan was approved and incorporated into the Conditions of Approval for the development.

Hines is currently in the process of purchasing Parcels A & C1 of the MacArthur Station project, an approximate 383-unit market-rate rental development in Oakland. As part of this due diligence, Nelson\Nygaard has reviewed currently available background materials to provide a recommendation for how to address unbundling and public parking at the two fully entitled residential parcels. **Unbundling refers to the practice of separating (unbundling) the cost of parking from the cost of housing or the cost of tenant space.**

PARKING & TDM REQUIREMENTS

Figure 1 provides details regarding the City's parking and TDM requirements for the two parcels. Two primary documents were used to extract this information.

- City of Oakland Administrator Agenda Report Final Development Plan (FDP), MacArthur Station Phases 3 and 4. Dated April 20, 2015.
- MacArthur Transit Village Final Transportation Demand Management Plan. Dated October 26, 2010.

	Parcel A	Parcel C1	Total
Rental Units	287	96	383
Retail (square feet)	22,287	1,202	23,489
Parking – Administrator Report, pdf p. 15, PC report (spaces)	254	69	323
Parking – Administrator Report, pdf p. 27, PC report (spaces) Res. Min: .5 space/unit			Residential Min: 192 Residential Max: 383

Figure 1 FDP and TDM Plan Requirements

MACARTHUR STATION PARKING IMPLEMENTATION | INITIAL STUDY

Hines

	Parcel A	Parcel C1	Total
Res. Max: 1 space/unit			Res Proposed ¹ : 294
Retail Min: 1 sp/1KSF			Retail Min: 24
Retail Max: 1 sp/838sf			Retail Max: 28 or 31
			Retail Proposed ¹ : 28
			Total Min: 216
			Total Max: 414
			Total Proposed ¹ : 322
Unbundling (per TDM Plan)	At a minimum 30% of parking supply	No requirement	
Unleased unbundled residential spaces made available to retail or BART (per TDM Plan)	Yes	No requirement	

Two additional TDM Plan statements should be mentioned for further discussion in the following sections.

- "In Block A, one floor will be shared between various users, while a second floor will be secured only for residents." (page 7)
- "No more than 1 parking space per residential unit will be offered." (page 7)

PROPOSED PARKING ASSUMPTIONS

Figure 2 provides Bridge/Hines' proposal for the two parcels. Note that the unit count is currently an approximation:

	Parcel A	Parcel C1	Total	
Rental Units	287	96	383	
Retail (square feet)	20,334	1,100	21,434	
Residential Parking	esidential Parking 165 + 2 carshare spaces 67 + 2 ADA spaces + 6 ADA spaces			
Retail/Leasing Parking	29 + 2 ADA spaces	0	29 + 2 ADA spaces	
Proposed Residential Parking Ratio	173 spaces/287 units = 0.6 spaces/unit (incl. 6 ADA spaces)	69 spaces/96 units = 0.7 spaces/unit (incl. 2 ADA spaces)	242 spaces/383 units = 0.6 spaces/unit	
Unbundling	30% of residential parking supply	No		
Unleased unbundled residential spaces made available to retail or BART	Yes	No		

Elauro 2	Dridgo/Llipoc I	Init Dor	king and	TDM Dropocal
rigule z	Driuge/nines (UTIIL, Fai	King, anu	I DIVI FI UPUSAL

¹ Per the 2015 Administrator Agenda Report, not the final Bridge/Hines Plan

CONCLUSIONS AND RECOMMENDATION

Sufficient Residential and Retail Parking

The proposed parking supply falls within the minimum and maximum parking requirements for both residential and retail use. The residential parking ratio is 0.6 spaces per unit in Parcel A and 0.7 spaces per unit in Parcel C1.

Recommendation

The TDM Plan requires that "30 percent of the parking for the first market rate building (Block A) will be unbundled". It also requires that "Any unbundled parking not leased by residents will be made available to commercial tenants or BART patrons." To fulfill these two requirements, Nelson\Nygaard recommends the following.

- All 175 subterranean parking spaces in Block A will be accessed behind a gate.
 - During the TDM Plan development, it was assumed that "one floor will be shared between various users, while a second floor will be secured only for residents." However, there will only be one subterranean level of parking. We therefore recommend that all of these spaces are gated, per the following supporting recommendations.
- 30% (52 spaces) of the Block A subterranean parking supply will be delineated and defined as the "potential public parking" section (BlockA30). The remaining 122 parking spaces (BlockA70) will be defined as residential only. There will be no gate between these two supplies.
- At the time new residents sign a lease agreement, they will be informed that they can choose to be placed on the BlockA70 and/or the BlockA30 waitlist. Since BlockA30 spaces will be unbundled, residents on this waitlist will know that there is a monthly parking fee associated with these spaces.
 - The rental agreement will state that the monthly fee to park in BlockA30 may vary biannually in order to manage parking demand.
 - A minimum and maximum monthly fee, set for two consecutive years, will be included in the rental agreement so that tenants are informed of what the caps are. The agreement will also include a statement that tenants will be informed of potential changes to the cap six (6) months in advance.
 - At this time, minimum and maximum fees for the first two years are not proposed. These will be developed in the next phase of the project.
 - If there is long-term availability more than 10% of BlockA30 spaces unleased for more than 3 months – it will be made available to commercial tenants or BART patrons on a monthly basis through a waitlist administered by property management. There will be no daily public parking.
 - Example: If six (6) parking spaces in BlockA30 are not leased by residents for three (3) consecutive months, all six spaces will be offered to the commercial tenants or BART patrons on a monthly basis.

In order to comply with the TDM Plan statement (p. 7) that "No more than 1 parking space per residential unit will be offered", no household will be offered more than 1 space per unit. In the event that not all spaces are leased in the BlockA70 section, Hines will reevaluate this requirement. However, the objective is to allow each unit access to no more than one parking space.

505 17TH STREET 2ND FLOOR OAKLAND, CA 94612 510.251.8210 WWW.UP-PARTNERS.COM

ATTACHMENT H

MEMORANDUM -

DATE: April 10, 2015

To: Elois Thornton Department of Planning and Building City of Oakland (City) FROM: Lynette Dias, AICP P. 510.251.8210 E. Idias@up-partners.com

RE: CEQA Compliance for MacArthur Station¹ Parcel A and Parcel C-1 FDP

A. OVERVIEW/SUMMARY

1. Current Proposal

In accordance with the Standard Conditions of Approval for the MacArthur Station² (MS) Project PUD/PDP and the terms of the Development Agreement, the City is in receipt of an application for a Final Development Plan (FDP) for Parcel A and Parcel C-1. For Parcel A/Stage 3, the FDP proposes 287 apartment residential units and 22,287 square feet of ground-floor commercial. An alternate development program for Parcel A, which would accommodate a grocery store is also proposed. The alternate plan includes 292 residential units, 33,983 square feet of ground-floor commercial space including approximately 22,085 square feet for a grocery store. The FDP for Parcel C-1 proposes 96 apartment residential units, 1,202 square feet of ground floor retail see Project Included Data Tables at the end of this memorandum.

The key purpose of this review is to determine whether the environmental effects of the FDP are adequately analyzed in the 2008 certified MacArthur Transit Village Project Environmental Impact Report (2008 EIR). As described below, development of Parcel A and Parcel C-1 are considered in the 2008 EIR and as proposed would not result in new significant impacts or a substantial increase or severity of a previously identified significant impact from those identified

¹ The Project was previously called the MacArthur Transit Village Project.

² See note 1 above.

ATTACHMENT H

in the 2008 EIR. As a result, the City does not need to prepare a Subsequent or Supplemental EIR to satisfy the environmental review requirements of CEQA. The 2008 EIR remains adequate for the FDP proposed for Parcel A and Parcel C-1.

The discussion below provides: (1) an overview of MS Project approvals and environmental review; (2) a summary of the relationship of the current proposed Parcel A and Parcel C-1 FDP with the approved MS Project PUD/PDP and the project analyzed in the 2008 EIR; and (3) findings that Parcel A and Parcel C-1 FDP fall within the scope of the 2008 EIR and do not require preparation of subsequent or supplemental environmental review pursuant to CEQA Guidelines Section 15162 and Section 15163.

2. Prior Project Approvals and Environmental Review

The City has granted several approvals for the MS Project. The PUD/PDP approved in 2008 authorizes the development of up to 675 residential units, 49,000 square feet of commercial, 5,000 square feet of community space, a parking structure for BART patrons, and various infrastructure improvements. The PUD/PDP also establishes the approved land uses, density, bulk, massing and design guidelines for the site. Prior to approving the PUD/PDP, the City certified an EIR for the MS Project (SCH No. 2006022075) on July 1, 2008. The City also subsequently approved addenda to the EIR in 2010 for Phases/Stages 1 and 2. Each addendum found determined that no new information or changes in the project or project circumstances required subsequent or supplemental environmental review.

Each of the previous approvals for the MS Project is detailed in the PUD/PDP Substantial Conformance Memo dated March 24, 2015.

3. Summary

Urban Planning Partners reviewed the requested subsequent approvals and found that there: (1) are no substantial project changes, (2) are no substantial changes in the project circumstances, and (3) is no new information of substantial importance, which could not have been known with the exercise of reasonable diligence when the 2008 EIR was certified, that would require major revisions of the certified 2008 EIR because of a new significant effect or an increase in the severity of a previously identified significant effect. Under CEQA section 21166 and CEQA Guidelines sections 15162 and 15163, no further environmental review is required.

A summary of the relationship of these approvals relative to Parcel A and Parcel C-1 FDP to prior MS Project approvals and the certified 2008 EIR is provided below.

B. RELATIONSHIP OF PROPOSED FDP TO PUD/PDP AND 2008 EIR (PROJECT CHANGES)

1. Relationship to Modified PUD/PDP

Urban Planning Partners and City staff evaluated the proposed FDP for Parcel A and Parcel C-1 and found that in all fundamental respects the FDP is in substantial compliance with the modified PUD/PDP and is consistent with the terms of the Development Agreement (see memo PUD/PDP Conformance Memo, dated March 25, 2015). The Memorandum and the April 15, 2015 Planning Commission Staff Report find that the MacArthur BART Transit Village Development Agreement, the modified PUD/PDP, and the COAs and associated exhibits do not preclude any of the refinements proposed as part of the Parcel A/Stage 3 and Parcel C-1/Stage 4 FDP. Based on the analysis included in the Memorandum and Staff Report, the Parcel A/Stage 3 and Parcel C-1/Stage 4 FDP is in substantial conformance with the approved PUD/PDP. Additionally, the FDP complies with the COAs and is consistent with the terms of the Development Agreement.

2. Relationship to 2008 EIR

The Parcel A and Parcel C-1 FDP is within the scope of the MS Project evaluated in the 2008 EIR and would not trigger any new significant impacts or a substantial increase or severity of a previously identified significant impact from those identified in the 2008 EIR. The MS Project analyzed in the certified 2008 EIR consisted of a new BART parking garage; improvements to the BART Plaza; up to 675 residential units (both market-rate and affordable); up to 44,000 square feet of commercial space (including live/work units) (note that 49,000 square feet of commercial was approved); 5,000 square feet of community space or childcare space; approximately 1,000 structured parking spaces, including the 300 space BART parking garage (which was increased to 480 spaces pursuant to the Conditions of Approval); approximately 30-45 on-street parking spaces, pedestrian and bicycle friendly internal streets and walkways; improvements to the Frontage Road; a new internal street, Village Drive (now called 39th Street), located between Frontage Road and Telegraph Avenue; two new traffic signals at the intersections of 39th Street/Telegraph Avenue and West MacArthur Boulevard/Frontage Road; a rezoning of the MS Project site to S-15, and a text amendment to the S-15 zone. Multiple FDPs were contemplated in the 2008 EIR (See Draft EIR, pages 72-74) to implement the Preliminary PUD/PDP.

a) Parcel A/Stage 3

The Parcel A/Stage 3 portion of the FDP proposes 287 apartment residential units and 22,287 square feet of commercial ground-floor retail. An alternate development program for Parcel A, which would accommodate a grocery store is also proposed. The alternate plan includes 292 residential units, 33,983 square feet of ground-floor commercial space including approximately 22,287 square feet for a grocery store. The PUD/PDP allows and the EIR evaluated up to 240 residential units and 26,000 square feet of commercial space on Parcel A. The EIR did not specify to whether the units would be for sale or rental units and such a distinction would not affect the EIR findings. Additionally, the refinement of the development buildout approved as part of the modified PUD/PDP and the Stage1 and 2 FDPs and the further refinement that is proposed as part of the FDP for Parcel, A and C-1,

ATTACHMENT H

would not result in a net increase in the overall development approved (675 units and 49,000 square feet of commercial) in the 2008 EIR.

The two key project revisions that are considered in this analysis are whether (1) the increase in residential units from 240 to 287 or 292—a net increase of 47 or 52 units for Parcel A; and (2) the potential increase in commercial space on Parcel A by up to 7,983 square feet if the alternate plan with the grocery store is developed would result in any new or substantially greater impacts. The analysis considers that the proposed refinements to Parcel A would not result in any net changes to the approved buildout for the modified PUD/PDP of up to 675 units and 49,000 square feet of commercial.

b) Parcel C-1/Stage 4

The Parcel C-1 portion of the FDP proposes 96 apartment residential units and 1,202 square feet of ground floor retail. A total of 51 or 46 units and 17,311 or 5,615 square feet of commercial would remain for Parcel C-2 which if developed would result in a total on Parcel C of up to 148 or 142 (with Stage 3 Alternate Plan) residential units and 18,513 or 6,817 (with Stage 3 Alternate Plan) square feet of commercial. The proposed FDP is limited to C-1 and does not include C-2. The 2008 PUD/PDP allows, and the EIR evaluated up to 195 (47 or 53 units more than proposed) for-sale residential units and 12,500 (6,013 square feet more or 5,683 square feet less than proposed) square feet of commercial space on the entirety of Parcel C. The EIR did not specify to whether the units would be for sale or rental units and such a distinction would not substantially affect the EIR findings.

The refinements in the approved FDP for the Parking Structure/Stage 1 and the proposed refinements for Parcels A and C-1 being considered as part of the current FDP application, would not result in net changes of commercial or residential units for the entire MS Project over what was analyzed in the EIR. The COAs and the EIR support development of up to 675 units and 49,000 square feet of commercial. **The modified distribution of these uses between blocks do not constitute a substantial changes to the project evaluated in the EIR that would require major revisions of the certified 2008 EIR, because of a new significant effect or a substantial increase in the severity of a previously identified significant effect.**

C. CHANGED CIRCUMSTANCES AND NEW INFORMATION

In the six years since certification of the EIR, there have been some intervening events with the potential to affect the 2008 EIR findings. The most notable event being that mid-2014 the City Council approved the Broadway Valdez District Specific Plan (BVDSP), which is approximately one mile from the MS Project site, and certified the associated EIR. Additionally a few new small infill sites in the MS Project vicinity have been developed with projects that were already entitled in 2008 and there have been some minor right of way and bike lane improvements.

ATTACHMENT H

Finally, since the 2008 EIR was certified, there have been updates to local, regional and State policies that may be applicable to the current FDP proposal.

The authors of this memorandum utilized the findings and analysis in the BVDSP EIR, which considers current conditions in the MS Project area and surrounding areas to assist in determining whether the changes referenced above or other new information, including changes to City, State, and regional policies and regulations, would constitute (1) a change in circumstances under which the MS Project would be taken or (2) new information of substantial importance that would require major revisions of the certified 2008 EIR, because of a new significant impact or a substantial increase in the severity of a previously identified significant impact under CEQA section 21166 and CEQA Guidelines sections 15162 and 15163.

Each environmental topic assessed under CEQA and in the 2008 EIR was considered, including Land Use and Planning Policy; Transportation and Circulation; Air Quality and Greenhouse Gases; Noise and Vibration; Hydrology and Water Quality; Public Services and Utilities; Cultural and Paleontological Resources; and Aesthetic Resources. There is no new information or changes in circumstances that would result in new significant impacts or a substantial increase or severity of a previously identified significant impact from those identified in the 2008 EIR.

The impacts associated with the Stage 2 and Stage 4 FDP are consistent with the findings of the 2008 EIR for the MS Project and no new impacts or more severe impacts would result due to new information or changed circumstances. No new mitigation measures would be required.

Each impact identified in the 2008 EIR, except two cumulative impacts, would be mitigated to a less-than-significant level with implementation of the 2008 EIR's Mitigation Measures and the City's Standard Conditions of Approval, which are both included in the MTV Mitigation Monitoring Program. The Stage 2 and Stage 4 FDP will be required to comply with the Mitigation and Monitoring Program as a Condition of Approval. The two significant and unavoidable impacts from the 2008 EIR are associated with the MS Project's contribution to cumulative impacts at two intersections (Telegraph Avenue/51st Street intersection and Broadway/MacArthur Boulevard intersection). The MS Project (including the Stage 3 and 4 FDP) would continue to contribute to these two cumulative significant and unavoidable impacts consistent with the findings of the 2008 EIR.

A summary of the assessment prepared for Transportation and Circulation and the Air Quality and Greenhouse Gas findings is provided below as these are the two topics most likely affected by changed circumstances and/or new information.

1. Transportation, Circulation, and Parking

A supplemental traffic analysis was prepared by Fehr & Peers that considered changes in background conditions that have occurred since the 2008 EIR was prepared. New information

was also considered including the City's current Traffic Impact Analysis Guidelines that include updated methods for trip generation and thresholds of significance. The analysis also looked at a variation in the type of commercial uses, including a grocery store. The updated analysis is provided as Attachment A.

The analysis utilizes the traffic analysis from the BVDSP EIR and concluded that the MS project as refined by the Parcel A and Parcel C-1 FDP would not result in any new significant transportation impacts or a substantial increase or severity of a previously identified significant transportation impact from those identified in the 2008 EIR, nor are new mitigation measures or alternatives warranted to address potential transportation impacts.

2. Air Quality and Greenhouse Gas Emissions

As described in the 2008 EIR, no significant construction-related air quality impacts would occur with implementation of the City Standard Conditions of Approval. Additionally no significant operation-period air quality impacts were identified in the 2008 EIR. No changes in the MS Project or the Parcel A or C-1 FDP or existing conditions warrant any new analysis.

Since 2008, the BAAQMD has revised its CEQA thresholds with respect to air quality and global climate change. The new thresholds, and the information used to help develop these thresholds, however, do not represent "new information" as specifically defined under CEQA. As a result, an analysis of the MS project according to the recommended May 2011 Bay Area Air Quality Management District (BAAQMD) CEQA Guidelines and Thresholds is not required.

D. CONCLUSION

As discussed above, the development associated with the Parcel A and Parcel C-1 FDPs was adequately considered in the 2008 EIR. The refinements incorporated into the FDP applications do not represent changes that would result in new or more severe impacts (or require new or significantly altered mitigation measures) beyond those already identified in the 2008 EIR. The 2008 EIR is adequate for the Parcel A and Parcel C-1 FDP and no subsequent or supplemental environmental review is warranted.

The following discussion summarizes the reasons why no supplemental or subsequent CEQA review is necessary pursuant to *CEQA Guidelines* Section 15162 and the City can rely on the previously certified EIR.

<u>Substantial Changes to the Project</u>. The refinements incorporated into the Parcel A and Parcel C-1 FDP, including an increase in the amount of commercial retail and office space would <u>not</u> result in new significant impacts or a substantial increase or severity of a previously identified significant impact from those identified in the 2008 EIR. Therefore, the proposed changes

included in the Parcel A and Parcel C-1 FDP are considered *minor* refinements, not *substantial* changes.

<u>Project Circumstances</u>. Since certification of the 2008 EIR, conditions in and around the MS Project area have not substantially changed and thus implementation of the Parcel A and Parcel C-1 FDP would <u>not</u> result in new significant environmental effects or a substantial increase in the severity of environmental effects already identified in the 2008 EIR. No substantial changes in noise levels, air quality, traffic, or other conditions have occurred within and around the MS Project site since certification of the EIR.

<u>New Information</u>. No new information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the 2008 EIR was certified, has been identified which is expected to result in: 1) new significant environmental effects or a substantial increase in the severity of environmental effects already identified in the EIR; or 2) mitigation measures or alternatives which were previously determined to be infeasible would in fact be feasible, or which are considerably different from those recommended in the 2008 EIR, and which would substantially reduce significant effects of the project, but the project applicant declines to adopt them.

As described previously, changes to the Parcel A and Parcel C-1 FDP would not result in significant environmental effects (including effects that would be substantially more severe than impacts identified in the 2008 EIR). Existing regulations (including City General Plan policies and ordinances in the Municipal Code) and mitigation measures included in the 2008 EIR would be adequate to reduce the impacts resulting from the Parcel A and Parcel C-1 FDP to less-thansignificant levels.

Consequently, there are no substantial project changes, no substantial changes in the project circumstances, and no new information of substantial importance that would require major revisions of the certified 2008 EIR, because of a new significant effect or an increase in the severity of a previously identified significant effect. Under CEQA section 21166 and CEQA Guidelines sections 15162 and 15163, no further environmental review is required. Thus, in considering approval of the Parcel A and Parcel C-1 FDP, the City should rely on the previously certified 2008 EIR.

Attachment Transportation Memorandum

Fehr / Peers

ATTACHMENT H

MEMORANDUM

Subject:	MacArthur Transit Village, 2014 Modified Project – Transportation Impact Analysis
From:	Sam Tabibnia
То:	Lynette Dias, Urban Planning Partners
Date:	April 9, 2015

OK14-0015

This memorandum summarizes the results of the transportation impact analysis that Fehr & Peers completed for the MacArthur Transit Village Project as modified in 2014. The impacts of the project were originally analyzed in an Environmental Impact Report (EIR) certified in 2008. The analysis in this memorandum accounts for changes in the project, in background conditions, and in the thresholds of significance since the certification of the EIR.

The MacArthur Transit Village Project as modified as a result of the Final Development Plans (FDPs) for Parcel A and Parcel C-1 would not result in any additional significant or more severe impacts than those identified in the 2008 EIR.

Our analysis assumptions and summary are detailed below.

INTRODUCTION

Figure 1 shows the location of the Project within the local and regional street system. This analysis evaluates the impacts of the project on intersection operations during the weekday morning and evening peak hours.

- *Existing* Represents existing conditions
- **Existing Plus Project** Existing conditions plus traffic generated by the proposed project
- 2035 No Project 2035 conditions as estimated by the Broadway Valdez District Specific Plan (BVDSP) Draft EIR (September 2013), without the traffic generated by the proposed project.

April 9, 2015 Page 2 of 14

• **2035** *Plus Project* – 2035 conditions as estimated by the *BVDSP Draft EIR* plus the traffic generated by the proposed project.

Fehr & Peers assessed intersection operations using Level of Service (LOS)¹ at the study intersections using the 2000 *Highway Capacity Manual* (HCM) methodologies.

PROJECT TRANSPORTATION CHARACTERISTICS

The project, as proposed in 2014, would consist of up to 675 multi-family dwelling units, 23,500 square feet of retail, 5,000 square feet of community space, and 25,500 square feet of supermarket.² The project also includes a 450 space garage that replaced the 618-space surface parking lot that served the BART Station.

Vehicular access to and from the project would be same as the previously analyzed project. Access to and from the MacArthur Transit Village would be through signalized intersections on 40th Street at Frontage Road adjacent to the BART Station, and on Telegraph Avenue at Village Drive south of 40th Street. Access to BART parking would be through a signalized intersection on MacArthur Boulevard.

Trip Generation

Trip generation refers to the process of estimating the amount of vehicular traffic a project would add to the local roadway network. **Table 1** summarizes the trip generation for the proposed Project. The estimates are based on rates and equations published by the Institute of Transportation Engineers (ITE) in *Trip Generation Manual* (9th Edition) with the following adjustments:

¹ The operations of roadway facilities are described with the term "level of service" (LOS). LOS is a qualitative description of traffic flow based on factors such as speed, travel time, delay, and freedom to maneuver. Six levels of service are defined ranging from LOS A (i.e., best operating conditions) to LOS F (worst operating conditions). LOS E typically corresponds to operations "at capacity." When volumes exceed capacity, stop-and-go conditions result and operations are designated as LOS F.

² The current project represents less development than this, but the 675 units represent the worst-case scenario for the number of residential units allowed by the PDP Conditions of Approval and covered in the EIR.

TABLE 1 MACARTHUR TRANSIT VILLAGE TRIP GENERATION SUMMARY

		ITE		W(P	eekday A Peak Hou	M r	W	eekday P Peak Hou	M r
Land Use	Units ¹	Code	Daily	In	Out	Total	In	Out	Total
Residential	675 DU	230 ²	3,387	40	198	238	193	95	288
Retail	23.5 KSF	820 ³	1,003	14	9	23	42	45	87
Supermarket	25.5 KSF	850 ⁴	3,096	54	33	87	123	119	242
Community Center	5.0 KSF	565 ⁵	370	32	29	61	29	33	62
Subtotal			7,856	140	269	409	387	292	679
Non-Auto Reduction (-43%) ⁶		-3,378	-60	-116	-176	-166	-126	-292	
Pass-by Reduction (-3	34%) ⁷		-397	0	0	0	-32	-32	-64
Net New Project Trips		4,478	80	153	233	189	134	323	
Approved Project ⁸		4,886	123	201	324	200	158	358	
Net Difference			-408	-43	-48	-91	-11	-24	-35

1. DU = Dwelling Units, KSF = 1,000 square feet.

 ITE Trip Generation (9th Edition) land use category 230 (Residential Condominium/Townhouse): Daily: Ln(T) = 0.87*Ln(X) + 2.46 AM Peak Hour: Ln(T) = 0.80*Ln(X) + 0.26 (17% in, 83% out) PM Peak Hour: Ln(T) = 0.82*Ln(X) + 0.32 (67% in, 33% out)
 ITE Trip Generation (9th Edition) land use category 820 (Shopping Center):

- Daily: $(T) = 42.70^{*}(X)$
 - AM Peak Hour: (T) = 0.96*(X) (42% in, 58% out)
 - PM Peak Hour: (T) = 3.71*(X) (36% in, 64% out)
- 4. ITE Trip Generation (9th Edition) land use category 850 (Supermarket):
 - Daily: T = 66.85*(X) + 1391.56
 - AM Peak Hour: T = 3.40*(X) (62% in, 38% out)
 - PM Peak Hour: T = 9.48*(X) (51% in, 49% out)
- 5. ITE Trip Generation (9th Edition) land use category 565 (Day Care Center): Daily: (T) = 74.06*(X)
 AM Peak Hour: (T) = 12.18*(X) (53% in, 47% out)
 PM Peak Hour: (T) = 12.34*(X) (47% in, 53% out)
- City of Oakland Transportation Impact Study Guidelines based on BATS 2000 data for developments in an urban environment within 0.5 miles of a BART station.
- 7. Based on ITE *Trip Generation Handbook (3rd Edition*), the weekday PM peak hour average pass-by rates for land use categories 820 and 850, are 34% and 36%, respectively. A 34% pass-by rate is applied to the retail and supermarket uses to present a more conservative analysis. Pass by rates are not applied to the AM peak hour. Daily pass-by is estimated to be half of the PM peak hour. This reduction was applied to trips after the non-automobile reduction.
- 8. MacArthur Transit Village Project Draft EIR, January 2008.

Source: Fehr & Peers, 2015.

• Non-Automobile Travel Modes - The ITE data is based on data collected at mostly single-use suburban sites where the automobile is often the only travel mode. However, the Project site is in a mixed-use urban environment with robust transit available and where many trips are walk, bike, or transit trips. Since the proposed Project is adjacent to the MacArthur BART Station, this analysis reduces the ITE based trip generation by 43 percent to account for the non-automobile trips. This reduction is consistent with City of Oakland *Transportation Impact Study Guidelines* and is based on the Bay Area Travel Survey (BATS) 2000 which shows that the non-automobile mode share within one-half mile of a BART Station in Alameda County is about 43 percent. A 2011 research study shows reducing ITE based trip generation using BATS data results in a more accurate estimation of trip generation for mixed use developments than just using ITE based trip generation.³

Pass-by Trips - Pass-by trips are defined as trips attracted to a site from adjacent roadways as an intermediate stop on the way to a final destination. Pass-by trips alter travel patterns in the immediate study area but do not add new vehicle trips to the roadway network, and should therefore be excluded from trip generation estimates. According to ITE's *Trip Generation Handbook* (3rd Edition), the average weekday PM peak hour pass-by reduction is 34 percent for retail and 36 percent for supermarket uses. To be conservative, this analysis reduces the retail and supermarket trips by 34 percent for the PM.⁴ This corresponds to about 64 trips, which is reasonable considering that it corresponds to about two percent of the current PM peak hour traffic volumes on Telegraph Avenue and 40th Street combined.

In addition, the project trip generation presented in Table 1 does not account for the following in order to present a "worst case" analysis:

• **Existing Parking Lot Trips** - The project would reduce the parking supply available to BART riders by about 168 spaces. This analysis conservatively assumes that the 450-space BART parking garage would continue to generate the same amount of peak hour traffic as the 618-space parking lot that occupied the site prior to start of construction.

³ Evaluation of the Operation and Accuracy of Five Available Smart Growth Trip Generation Methodologies. Institute of Transportation Studies, UC Davis, 2011.

⁴ Since ITE does not provide pass-by reductions for AM peak hour, this analysis conservatively assumes no pass-by reductions for AM peak hour.

April 9, 2015 Page 5 of 14

As summarized in Table 1, the project would generate approximately 4,480 daily, 233 AM peak hour, and 323 PM peak hour trips. Table 1 also compares the project trip generation estimate with the project trip generation estimate in the 2008 certified EIR. The 2014 project would generate about 400 fewer daily trips, 91 fewer AM peak hour trips, and 35 fewer PM peak hour trips than estimated in the 2008 EIR. Note that the traffic impact analysis presented in the subsequent sections is conservative because it is based on a previous project description that generated more traffic than presented in Table 1.⁵

Trip Distribution, Trip Assignment

The trip distribution and assignment process estimates how the vehicle trips generated by a project site would distribute across the roadway network. **Figures 2 and 3** show the trip distribution for the residential and non-residential components of the project, respectively. The trip distribution was developed for the 2008 EIR based on existing travel patterns, locations of complementary land uses and results of the Alameda County Transportation Commission's (ACTC) Travel Demand Model.

Trips generated by the proposed project, as shown in Table 1, were assigned to the roadway network according to the trip distribution shown on Figures 2 and 3. **Figure 4** shows the resulting trip assignment by roadway segment for the weekday PM peak hour because the weekday peak hour has the highest project trip generation. Figure 4 also shows the study intersections analyzed in the 2008 EIR.

Study Intersections

The 2008 EIR analyzed the impacts of the proposed project at 25 study intersections in the vicinity of the project. The 2008 EIR identified significant impacts and improvements to mitigate those impacts to less-than-significant where feasible under cumulative conditions at the following locations:

• Under the Cumulative Year 2015 Baseline Plus Project conditions:

⁵ The traffic impact analysis is based on an earlier iteration of FDP project that included 24,500 square feet of office, 26,900 square feet of retail, and 11,200 square feet of supermarket. In comparison, the project evaluated in the traffic impact analysis included in the memo generated nine additional AM peak hour and 54 additional PM peak hour trips. As a result this analysis represents a worst-case analysis given it would generate more trips than the current FDP proposal.

April 9, 2015 Page 6 of 14

- 1. Telegraph Avenue/51st Street (intersection #3) Mitigation consisting of optimizing signal timings would mitigate the impact to less-than-significant.
- 2. Market Street/MacArthur Boulevard (#16) Mitigation consisting of changing the cycle length and optimizing signal timings would mitigate the impact to less-than-significant.
- Under Cumulative 2030 Baseline Plus Project conditions:
 - 3. Telegraph Avenue/52nd Street/Claremont Avenue (#2) Mitigation consisting of prohibiting northbound left-turns during peak commute times, changing the cycle length and optimizing signal timings, would mitigate the impact to less-than-significant.
 - 4. Telegraph Avenue/51st Street (#3) Mitigation consisting of changing the cycle length and optimizing signal timings, would not mitigate the impact. The impact is significant and unavoidable.
 - 5. West Street/40th Street (#8) Mitigation consisting of optimizing signal timings would mitigate the impact to less-than-significant.
 - 6. Telegraph Avenue/40th Street (#13) Mitigation consisting of providing protected/ permitted left-turn phasing on eastbound and westbound approaches, changing the cycle length, and optimizing signal timings, would mitigate the impact to less-thansignificant.
 - 7. Market Street/MacArthur Boulevard (#16) Mitigation consisting of striping a left-turn lane on the northbound approach, changing the cycle length, and optimizing signal timings, would mitigate the impact to less-than-significant.
 - 8. Telegraph Avenue/MacArthur Boulevard (#20) Mitigation consisting of providing protected/permitted left-turn phasing on northbound and southbound approaches, changing the cycle length, and optimizing signal timings, would mitigate the impact to less-than-significant.
 - 9. Broadway/MacArthur Boulevard (#22) No improvements identified at this intersection. Impact is significant and unavoidable.

The *Broadway Valdez District Specific Plan (BVDSP) Draft EIR* (September 2013) provides the latest published traffic operations analysis at intersections in the vicinity of the MacArthur Transit Village. The BVDSP Draft EIR accounts for the approved MacArthur Transit Village project in the future forecasts. **Table 2** compares total intersection volumes under Existing and Cumulative Plus Project conditions at intersections that were analyzed in both the 2008 Project EIR and BVDSP EIR. In general, a 10 percent fluctuation in traffic volumes is within the typical fluctuation expected in day-to-day traffic volumes. Considering that the more recent traffic volume data shows a decrease or a less than 10 percent increase in volumes at all but one of the intersections listed in Table 2, it is estimated that traffic volumes in the project vicinity have decreased or stayed the same since the completed on the 2008 EIR.

TABLE 2 INTERSECTION VOLUME COMPARISON									
		Exi	sting Cond	litions	Cumulative Plus Project				
Intersection	Peak Hour	MTV ¹	BVSP ²	Percent Difference	MTV ³	BVSP ⁴	Percent Difference		
Telegraph Avenue/	AM	2,622	N/A	N/A	4,507	N/A	N/A		
Avenue	PM	2,907	N/A	N/A	3,662	N/A	N/A		
Telegraph Avenue/	AM	3,607	2,817	-22%	5,138	3,896	-24%		
51st Street	PM	3,856	3,085	-20%	5,064	4,440	-12%		
Telegraph Avenue/	AM	2,198	1,766	-20%	4,201	3,540	-16%		
40th Street	PM	3,360	3,549	6%	5,130	5,880	15%		
Market Street/	AM	1,239	1,326	7%	3,591	2,650	-26%		
MacArthur Boulevard	PM	2,165	1,684	-22%	4,100	3,470	-15%		
Telegraph Avenue/	AM	2,087	1,751	-16%	5,185	3,960	-24%		
MacArthur Boulevard	PM	3,021	2,613	-14%	5,434	5,550	2%		
Broadway/	AM	2,525	N/A	N/A	6,054	N/A	N/A		
MacArthur Boulevard	PM	3,285	3,082	-6%	5,845	5,680	-3%		
Telegraph Avenue/	AM	2,011	1,930	-4%	3,822	3,370	-12%		
27th Street	PM	2,561	2,872	12%	3,958	5,080	28%		

¹ Based on existing intersection volumes published in *MacArthur Transit Village Project Draft EIR (January 2008)*.

Based on existing intersection volumes published in *Broadway Valdez District Specific Plan Draft EIR* (September 2013).

³ Based on Cumulative Plus Project (2030) intersection volumes published in *MacArthur Transit Village Project Draft EIR* (*January 2008*).

⁴ Based on Cumulative Plus Project (2035) intersection volumes published in *Broadway Valdez District Specific Plan Draft EIR* (September 2013).

Source: Fehr & Peers, 2014.

Table 3 shows intersection operations at major intersections in the vicinity of the MacArthur Transit Village project under Existing and 2035 Plus Project conditions as documented in the BVDSP Draft EIR. BVDSP Draft EIR does not identify any intersections in the vicinity of the MacArthur Transit Village project as operating at a deficient level under Existing conditions and identifies the following intersections as operating at a deficient level in 2035:

- 1. Telegraph Avenue/40th Street
- 2. Telegraph Avenue/MacArthur Boulevard
- 3. Telegraph Avenue/27th Street

TABLE 3 INTERSECTION LOS SUMMARY BASED ON RECENT PUBLISHED DOCUMENTS

			Existing Conditions		2035 Plus	s Project ³
Intersection	Traffic Control ¹	Peak Hour	Delay ² (seconds)	LOS	Delay ² (seconds)	LOS
Telegraph Avenue/52nd	Signal	AM	14.3	В	21.1	С
Street/Claremont Avenue	Signal	PM	13.7	В	24.7	С
Telegraph Avenue/	Signal	AM	30.6	С	40.1	D
51st Street	Signal	PM	42.0	D	72.3	E
Telegraph Avenue/		AM	21.2	С	36.9	D
40th Street	Signal	PM	31.9	С	135.0 (v/c=1.80)	F
Market Street/	Signal	AM	15.9	В	27.8	С
MacArthur Boulevard	Signal	PM	15.2	В	29.9	С
Telegraph Avenue/		AM	19.5	В	36.3	D
MacArthur Boulevard	Signal	PM	12.5	В	126.5 (v/c=2.23)	F
Broadway/	Signal	AM	30.0	С	62.6	E
MacArthur Boulevard	Signal	PM	38.8	D	79.1	E
Telegraph Avenue/		AM	22.0	С	29.3	C
27th Street	Signal	PM	22.9	С	138.1 (v/c=1.91)	F

Bold indicates intersections operating at an unacceptable level. All intersection located in Downtown or on arterials that provide direct access to Downtown where LOS E (not LOS D) is the threshold.

¹ Signal = intersection is controlled by a traffic signal

For signalized intersections, average intersection delay and LOS based on the 2000 HCM method is shown. For sidestreet stop-controlled intersections, delays for worst movement and average intersection delay are shown: intersection average (worst movement)

³ The 2035 Plus Project scenario includes the buildout of the MacArthur Transit Village project. Source: Broadway Valdez District Specific Plan Draft EIR (September 2013), Fehr & Peers, 2014.

Considering that the current project is estimated to generate fewer trips than the approved project during both AM and PM peak hours, and that recently published environmental documents show that existing and future traffic volumes in the study area have generally decreased, and that most intersections operate at same or better conditions under existing and future conditions, this analysis focuses on intersections for which recent documents (i.e., BVDSP EIR) project future operating deficiencies.

Therefore, this assessment focuses on the analysis of project impacts at these three intersections only. The proposed project is not expected to cause a significant impact at the other

April 9, 2015 Page 9 of 14

intersections because the other intersections are expected to operate at LOS E⁶ or better under 2035 Plus Project conditions.

SIGNIFICANCE CRITERIA

This analysis uses City of Oakland's CEQA Thresholds of Significance Guidelines (November 2013) to determine if the proposed Project would cause significant impact. The Project would have a significant impact on the environment if it were to:

Traffic Load and Capacity Thresholds

- At a study, signalized intersection which is located **outside the Downtown**⁷ area and that does not provide direct access to Downtown, the project would cause the motor vehicle level of service (LOS) to degrade to worse than LOS D (i.e., LOS E or LOS F) and cause the total intersection average vehicle delay to increase by four (4) or more seconds;
- At a study, signalized intersection which is located within the Downtown area or that provides direct access to Downtown, the project would cause the motor vehicle LOS to degrade to worse than LOS E (i.e., LOS F) and cause the total intersection average vehicle delay to increase by four (4) or more seconds;
- At a study, signalized intersection outside the Downtown area and that does not provide direct access to Downtown where the motor vehicle level of service is LOS E, the project would cause the total intersection average vehicle delay to increase by four (4) or more seconds;
- 4. At a study, signalized intersection **outside the Downtown area and that does not provide direct access to Downtown** where the motor vehicle level of service is LOS E, the project would cause an increase in the average delay for any of the critical movements of six (6) seconds or more;
- At a study, signalized intersection for all areas where the motor vehicle level of service is LOS F, the project would cause (a) the overall volume-to-capacity ("V/C") ratio to increase 0.03 or more or (b) the critical movement V/C ratio to increase 0.05 or more;

⁶ Based on City of Oakland's latest CEQA Thresholds of Significance Guidelines (November 2013), LOS E is considered the threshold on arterials that provide direct access to Downtown.

⁷ The Downtown area is defined in the Land Use and Transportation Element of the General Plan (page 67) as the area generally bounded by the West Grand Avenue to the north, Lake Merritt and Channel Park to the east, the Oakland Estuary to the south, and I-980/Brush Street to the west. Intersections that provide direct access to downtown are generally defined as principal arterials within two (2) miles of Downtown and minor arterials within one (1) mile of Downtown, provided that the street connects directly to Downtown.

6. At a study, unsignalized intersection the project would add ten (10) or more vehicles to the critical movement, and after project completion, satisfy the California Manual on Uniform Traffic Control Devices (MUTCD) peak-hour volume traffic signal warrant;

Cumulative Impacts

18. A project's contribution to cumulative impacts is considered "considerable" (i.e., significant) when the project exceeds at least one of the thresholds listed above in a future year scenario.

TRAFFIC OPERATIONS ANALYSIS

This section discusses the impacts of the proposed Project on traffic operations under Existing and 2035 conditions based on the City of Oakland's Thresholds of Significance described above.

Existing Plus Project Intersection Analysis

This section presents the extent of Project impacts relative to existing conditions based on application of Significance Thresholds #1 through #6 as listed on page 7 of this memorandum. **Figure 5** shows traffic volumes under Existing and Existing Plus Project conditions. Existing traffic volumes are based on existing counts presented in the BVDSP Draft EIR and the Existing Plus Project traffic volumes consist of Existing Conditions traffic volumes plus added traffic volumes generated by the Project.

Table 4 summarizes the intersection operations results for the Existing No Project and Existing Plus Project conditions. All study intersections would continue to operate at an acceptable LOS C or better under Existing Plus Project conditions. The proposed Project would not cause a significant impact at the study intersections under Existing Plus Project conditions. Consistent with the findings of the 2008 EIR, the project would not result in any significant impacts under Existing Plus Project conditions.

TABLE 4 INTERSECTION LOS SUMMARY EXISTING PLUS PROJECT CONDITIONS

			Existing Condition		onditions	Existing P Cond	Signific	
	Intersection	Traffic Control ¹	Peak Hour	Delay ² (seconds)	LOS	Delay ² (seconds)	LOS	ant Impact?
1.	Telegraph Avenue/ 40th Street	Signal	AM	21.2	С	21.2	С	No
			PM	31.9	С	28.4	С	No
2.	Telegraph Avenue/ MacArthur Boulevard	Signal	AM	19.5	В	19.7	В	No
			PM	12.5	В	13.9	В	No
3.	Telegraph Avenue/ 27th Street	Signal	AM	22.0	С	22.0	С	No
			PM	22.9	С	23.2	С	No

Bold indicates intersections operating at an unacceptable level. All intersection located in Downtown or on arterials that provide direct access to Downtown where LOS E (not LOS D) is the threshold.

¹ Signal = intersection is controlled by a traffic signal

² For signalized intersections, average intersection delay and LOS based on the 2000 HCM method is shown. For sidestreet stop-controlled intersections, delays for worst movement and average intersection delay are shown: intersection average (worst movement)

Source: Broadway Valdez District Specific Plan Draft EIR (September 2013), Fehr & Peers, 2014.

2035 Intersection Analysis

Project impacts at intersections under 2035 conditions is based on direct application of Significance Threshold #18, which references Significance Thresholds #1 through #6.

Traffic Forecasts

This analysis uses the year 2035 traffic forecasts from BVDSP Draft EIR, which was based on the most recent ACTC Model (released in June 2011), which uses land use data consistent with Association of Bay Area Government (ABAG) *Projection 2009*.

The 2035 Plus Project conditions forecasts are based on the traffic forecasts published in the BVDSP Draft EIR because the land use database used to develop the BVDSP Draft EIR forecasts include the approved MacArthur Transit Village Project. The 2035 No Project conditions forecasts were estimated by subtracting the Project trips from the 2035 Plus Project conditions forecasts.

Figure 8 shows the traffic volumes for the 2035 No Project and 2035 Plus Project scenarios.

April 9, 2015 Page 12 of 14

2035 Roadway Network

The 2035 No Project and the 2035 Plus Project conditions assume the following approved and fully funded modifications to the roadway network at the three study intersections:

- The Telegraph Avenue Complete Streets Project will provide buffered Class 2 bicycle lanes on northbound and southbound Telegraph Avenue between 20th and 41st Streets by eliminating one travel lane in each direction. The project will also provide right-turn lanes in both directions of Telegraph Avenue at most intersections.
- The MacArthur Boulevard Bikeway project will provide Class 2 bicycle lanes on MacArthur Boulevard. The project will also convert the shared left/through lane on both eastbound and westbound MacArthur Boulevard at Telegraph Avenue to exclusive left-turn lanes. The project will also upgrade the signal equipment at the Telegraph Avenue/MacArthur Boulevard intersection to provide protected east/west left-turn phasing.

2035 Intersection Operations

Table 5 summarizes intersection LOS calculations for 2035 No Project and 2035 Plus Project conditions. The three study intersections are estimated to operate at LOS F during the PM peak hour regardless of the proposed project. The project would reduce the intersection delay and/or V/C ratio at the Telegraph Avenue/40th Street intersection because it would decrease the traffic volume for some movements, such as the eastbound left-turn, due to the relocation of the BART parking access from 40th Street to MacArthur Boulevard.

The project would not cause a significant impact at the Telegraph Avenue/27th Street intersections because the project would not cause the overall volume-to-capacity (V/C) ratio to increase by 0.03 or more or the critical movement V/C ratio to increase by 0.05 or more.

Consistent with the findings of the 2008 EIR, the MTV project with the FDPs for Parcel A and C-1 would cause significant impacts at the Telegraph Avenue/40th Street and Telegraph Avenue/ MacArthur Boulevard intersections. The mitigations included in the 2008 EIR would adequately mitigate these impacts to a less-than-significant level; no new mitigation is needed. The findings are also consistent with the findings of the *Broadway Valdez District Specific Plan Draft EIR* (September 2013). April 9, 2015 Page 13 of 14

TABLE 5 INTERSECTION LOS SUMMARY 2035 CONDITIONS											
				2035 No Project Conditions		2035 Plus Project Conditions		Signific	2035 Plus Project Conditions (Mitigated)		Significanc
	Intersection	Traffic Control ¹	Peak Hour	Delay ² (seconds)	LOS	Delay ² (seconds)	LOS	ant Impact?	Delay ² (seconds)	LOS	e after Mitigation
1	Telegraph Avenue/ 40th Street	Signal	AM	51.9	D	55.8	E	No	60.9	E	Loss than
1.			PM	>120 (v/c=2.58)	F	>120 (v/c=2.49)	F	Yes ³	>120 (v/c=1.70)	F	Significant
2.	Telegraph Avenue/ MacArthur Boulevard	Signal	AM	79.4	Е	93.4 (v/c=1.59)	F	Yes ⁴	77.9	E	Less than Significant
			PM	>120 (v/c=3.22)	F	>120 (v/c=3.28)	F	Yes⁵	>120 (v/c=1.58)	F	
2	Telegraph Avenue/ 27th Street	Signal	AM	31.9	С	32.8	С	No	32.8	С	No
3.			PM	>120 (v/c=2.42)	F	>120 (v/c=2.43)	F	No	>120 (v/c=2.43)	F	Impact
 Bold indicates intersections operating at an unacceptable level. All intersection located in Downtown or on arterials that provide direct access to Downtown where LOS E (not LOS D) is the threshold. ¹ Signal = intersection is controlled by a traffic signal ² For signalized intersections, average intersection delay and LOS based on the 2000 HCM method is shown. For side-street stop-controlled intersections, delays for worst movement and average intersection delay are shown: intersection average (worst movement) ³ The project would cause a significant impact at this intersection because the project would cause the critical movement V/C ratio to increase by 0.05 or more at an intersection operating at LOS F regardless of the project. ⁴ The project would cause a significant impact at this intersection because the project would cause the intersection LOS to degrade from LOS E to LOS F. ⁵ The project would cause a significant impact at this intersection because the project would cause the overall intersection V/C ratio to increase 0.03 or more and critical movement V/C ratio to increase by 0.05 or more at an intersection operating at LOS F. ⁵ The project would cause a significant impact at this intersection because the project would cause the overall intersection V/C ratio to increase 0.03 or more and critical movement V/C ratio to increase by 0.05 or more at an intersection operating at LOS F regardless of the project. ⁵ The project would cause a significant impact at this intersection because the project would cause the overall intersection V/C ratio to increase 0.03 or more and critical movement V/C ratio to increase by 0.05 or more at an intersection operating at LOS F regardless of the project. ⁵ Source: Program V/C ratio to increase by 0.05 or more at an intersection operating at LOS F regardless of the project. 											
Sou	Source: Broadway Valdez District Specific Plan Draft EIR (September 2013), Fehr & Peers, 2014.										

April 9, 2015 Page 14 of 14

Please contact us with questions or comments.

Attachments:

Figures:

Figure 1	Site Location
Figure 2	Residential Trip Distribution
Figure 3	Non-Residential Trip Distribution
Figure 4	Project Peak Hour Net Change in Traffic Volume
Figure 5	Existing Peak Hour Traffic Volumes
Figure 6	2035 Peak Hour Traffic Volumes

Appendix:

Intersection LOS Calculations

LEGEND

Study Intersection

MacArthur Transit Village

Figure 1

Site Location

Inbound % (Outbound %) Project Trip Distribution

Inbound Travel Route

Outbound Travel Route

Study Intersection

MacArthur Transit Village

Figure 2

Residential Trip Distribution
ATTACHMENT H

Inbound % (Outbound %) Project Trip Distribution

Inbound Travel Route

Outbound Travel Route

Study Intersection

MacArthur Transit Village

Figure 3

Non-Residential Trip Distribution

ATTACHMENT H

LEGEND

Street Segment where Project would Increase Peak Hour Traffic by 50 or more trips

- Street Segment where Project would Increase Peak Hour
 - Traffic by between 10 to 50 trips

Recently Analyzed as Operating Deficiently

Street Segment where Project would Increase or decrease Peak Hour Traffic by 10 or fewer trips

MacArthur Transit Village

Street Segment where Project would Decrease Peak Hour Traffic by between 10 to 50 trips Street Segment where Project would Decrease Peak Hour Traffic by 50 or more trips

Project Peak Hour Net Change in Traffic Volume

Figure 4

ATTACHMENT H

LEGEND

XX (YY) AM (PM) Peak Hour **Trafffic Volumes**

•

Study Intersection

MacArthur Transit Village

Existing Peak Hour Traffic Volumes

Figure 5

LEGEND

XX (YY) AM (PM) Peak Hour Trafffic Volumes

ur (#) Study Intersection

MacArthur Transit Village

2035 Peak Hour Traffic Volumes

Figure 6

APPENDIX

Intersection LOS Calculations

MacArthur Transit Village

September 2014

Fehr / Peers

HCM Signalized Intersection Capacity Analysis 1: 40th St. & Telegraph Ave.

6/1	6/	201	14
-----	----	-----	----

	٦	→	$\mathbf{\hat{z}}$	•	-	•	1	1	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜1 ≽		5	≜ 15		5	≜ 16		ሻ	≜ 15	
Volume (vph)	66	226	58	41	251	97	71	290	69	83	404	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.97		1.00	0.97		1.00	0.98	
Flpb, ped/bikes	0.95	1.00		0.97	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.96		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1688	3387		1710	3306		1770	3345		1770	3368	
Flt Permitted	0.46	1.00		0.54	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	820	3387		964	3306		1770	3345		1770	3368	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	66	226	58	41	251	97	71	290	69	83	404	110
RTOR Reduction (vph)	0	30	0	0	53	0	0	18	0	0	22	0
Lane Group Flow (vph)	66	254	0	41	295	0	71	341	0	83	492	0
Confl. Peds. (#/hr)	81		52	52		81			112			59
Turn Type	Perm			Perm			Prot			Prot		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	19.5	19.5		19.5	19.5		7.7	43.8		8.2	44.3	
Effective Green, g (s)	19.5	19.5		19.5	19.5		7.7	43.8		8.2	44.3	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.09	0.52		0.10	0.52	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	188	777		221	758		160	1724		171	1755	
v/s Ratio Prot		0.07			c0.09		0.04	0.10		c0.05	c0.15	
v/s Ratio Perm	0.08			0.04								
v/c Ratio	0.35	0.33		0.19	0.39		0.44	0.20		0.49	0.28	
Uniform Delay, d1	27.4	27.3		26.4	27.7		36.6	11.1		36.4	11.4	
Progression Factor	1.00	1.00		1.00	1.00		0.85	1.28		1.00	1.00	
Incremental Delay, d2	1.1	0.2		0.4	0.3		1.9	0.3		2.2	0.4	
Delay (s)	28.6	27.5		26.8	28.0		33.2	14.5		38.6	11.8	
Level of Service	С	С		С	С		С	В		D	В	
Approach Delay (s)		27.7			27.9			17.6			15.5	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM Average Control Delay			21.2	Н	CM Level	of Service	1		С			
HCM Volume to Capacity rat	io		0.32									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilizat	ion		63.1%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: W MacArthur Blvd. & Telegraph Ave.

6/16/2014

	۶	-	\mathbf{F}	4	+	*	٠	t	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		-€††}-			ፈቶኩ		۲	∱1 ≽		۲	A1⊅	
Volume (vph)	50	283	112	75	292	77	91	298	60	81	294	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		0.98	1.00	
Frt		0.96			0.97		1.00	0.97		1.00	0.98	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4786			4870		1746	3427		1738	3465	
Flt Permitted		0.83			0.77		0.55	1.00		0.54	1.00	
Satd. Flow (perm)		3984			3792		1013	3427		984	3465	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	50	283	112	75	292	77	91	298	60	81	294	38
RTOR Reduction (vph)	0	89	0	0	61	0	0	9	0	0	6	0
Lane Group Flow (vph)	0	356	0	0	383	0	91	349	0	81	326	0
Confl. Peds. (#/hr)	34		41			34	21		29	29		21
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		17.7			17.7		56.8	56.8		56.8	56.8	
Effective Green, g (s)		17.7			17.7		56.8	56.8		56.8	56.8	
Actuated g/C Ratio		0.21			0.21		0.67	0.67		0.67	0.67	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		830			790		677	2290		658	2315	
v/s Ratio Prot								c0.10			0.09	
v/s Ratio Perm		0.09			c0.10		0.09			0.08		
v/c Ratio		0.43			0.48		0.13	0.15		0.12	0.14	
Uniform Delay, d1		29.3			29.6		5.1	5.2		5.1	5.2	
Progression Factor		1.20			1.00		1.00	1.00		1.26	1.28	
Incremental Delay, d2		0.1			0.2		0.4	0.1		0.4	0.1	
Delay (s)		35.2			29.8		5.6	5.3		6.8	6.7	
Level of Service		D			С		А	А		А	А	
Approach Delay (s)		35.2			29.8			5.4			6.7	
Approach LOS		D			С			A			А	
Intersection Summary												
HCM Average Control Delay			19.5	F	ICM Leve	l of Servic	е		В			
HCM Volume to Capacity ratio			0.23									
Actuated Cycle Length (s)			85.0	S	Sum of los	t time (s)			10.5			
Intersection Capacity Utilization	۱		76.2%	10	CU Level	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: 27th St. & Telegraph Ave.

6/16/2014

	≯	-	\rightarrow	4	-	•	1	1	1	1	↓	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜t ≽		5	≜ 1≽		5	≜ 15		ሻ	≜ 16	
Volume (vph)	251	309	113	39	222	92	64	321	31	45	331	112
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.99		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3381		1770	3345		1761	3487		1765	3376	
Flt Permitted	0.95	1.00		0.95	1.00		0.46	1.00		0.52	1.00	
Satd. Flow (perm)	1770	3381		1770	3345		852	3487		972	3376	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	251	309	113	39	222	92	64	321	31	45	331	112
RTOR Reduction (vph)	0	39	0	0	57	0	0	7	0	0	33	0
Lane Group Flow (vph)	251	383	0	39	257	0	64	345	0	45	410	0
Confl. Peds. (#/hr)			2			21	10		5	5		10
Confl. Bikes (#/hr)			5			3			4			27
Turn Type	Prot			Prot			Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	15.7	29.4		4.5	18.2		37.6	37.6		37.6	37.6	
Effective Green, g (s)	16.2	28.9		5.0	17.7		39.1	39.1		39.1	39.1	
Actuated g/C Ratio	0.19	0.34		0.06	0.21		0.46	0.46		0.46	0.46	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	337	1150		104	697		392	1604		447	1553	
v/s Ratio Prot	c0.14	c0.11		0.02	0.08			0.10			c0.12	
v/s Ratio Perm							0.08			0.05		
v/c Ratio	0.74	0.33		0.38	0.37		0.16	0.22		0.10	0.26	
Uniform Delay, d1	32.5	20.9		38.5	28.9		13.4	13.8		13.0	14.1	
Progression Factor	1.00	1.00		1.19	0.80		1.26	1.28		1.00	1.00	
Incremental Delay, d2	7.6	0.1		0.8	0.1		0.9	0.3		0.5	0.4	
Delay (s)	40.1	20.9		46.6	23.1		17.8	18.0		13.4	14.5	
Level of Service	D	С		D	С		В	В		В	В	
Approach Delay (s)		28.1			25.7			17.9			14.4	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM Average Control Delay			22.0	H	CM Level	of Servic	е		С			
HCM Volume to Capacity rat	io		0.38									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			8.0			
Intersection Capacity Utilizat	ion		67.9%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: 40th St. & Telegraph Ave.

6/16/2014

	٦	-	\mathbf{r}	•	-	*	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜1 ≽		5	≜t ≽		ሻ	≜ 16		5	≜ 15	
Volume (vph)	180	601	186	41	379	286	207	706	36	136	614	177
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.96		1.00	0.95		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.97	1.00		0.97	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.94		1.00	0.99		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1708	3288		1708	3138		1770	3496		1770	3379	
Flt Permitted	0.26	1.00		0.19	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	474	3288		342	3138		1770	3496		1770	3379	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	180	601	186	41	379	286	207	706	36	136	614	177
RTOR Reduction (vph)	0	37	0	0	172	0	0	4	0	0	33	0
Lane Group Flow (vph)	180	750	0	41	493	0	207	738	0	136	758	0
Confl. Peds. (#/hr)	93		122	122		93			86			39
Turn Type	Perm			Perm			Prot			Prot		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	25.5	25.5		25.5	25.5		12.1	30.8		10.2	28.9	
Effective Green, g (s)	25.5	25.5		25.5	25.5		12.1	30.8		10.2	28.9	
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.15	0.39		0.13	0.36	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	151	1048		109	1000		268	1346		226	1221	
v/s Ratio Prot		0.23			0.16		c0.12	0.21		0.08	c0.22	
v/s Ratio Perm	c0.38			0.12								
v/c Ratio	1.19	0.72		0.38	0.49		0.77	0.55		0.60	0.62	
Uniform Delay, d1	27.2	24.1		21.1	22.0		32.6	19.2		33.0	21.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	134.1	2.0		0.8	0.1		11.8	1.6		3.1	2.4	
Delay (s)	161.4	26.0		21.9	22.2		44.5	20.8		36.1	23.4	
Level of Service	F	С		С	С		D	С		D	С	
Approach Delay (s)		51.2			22.2			26.0			25.3	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM Average Control Delay	1		31.9	H	CM Level	of Service	е		С			
HCM Volume to Capacity rat	tio		0.87									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			13.5			
Intersection Capacity Utilizat	tion		81.9%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: W MacArthur Blvd. & Telegraph Ave.

6/16/2014

	۶	-	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		-a†ħ			ፈቶኩ		٦	≜1 }		٦	A1⊅	
Volume (vph)	60	325	165	116	270	95	199	508	59	192	545	79
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.98			0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes		1.00			0.99		0.99	1.00		0.99	1.00	
Frt		0.95			0.97		1.00	0.98		1.00	0.98	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4735			4796		1748	3469		1746	3454	
Flt Permitted		0.82			0.73		0.41	1.00		0.44	1.00	
Satd. Flow (perm)		3920			3554		751	3469		805	3454	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	60	325	165	116	270	95	199	508	59	192	545	79
RTOR Reduction (vph)	0	68	0	0	65	0	0	4	0	0	6	0
Lane Group Flow (vph)	0	482	0	0	416	0	199	563	0	192	618	0
Confl. Peds. (#/hr)	55		54	54		55	37		38	38		37
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		15.0			15.0		39.4	39.4		39.4	39.4	
Effective Green, g (s)		15.0			15.0		39.4	39.4		39.4	39.4	
Actuated g/C Ratio		0.23			0.23		0.61	0.61		0.61	0.61	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		906			821		456	2106		489	2097	
v/s Ratio Prot								0.16			0.18	
v/s Ratio Perm		c0.12			0.12		c0.27			0.24		
v/c Ratio		0.53			0.51		0.44	0.27		0.39	0.29	
Uniform Delay, d1		21.9			21.7		6.8	6.0		6.6	6.1	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.3			0.2		0.2	0.0		0.2	0.0	
Delay (s)		22.2			21.9		7.1	6.0		6.8	6.1	
Level of Service		С			С		А	А		А	А	
Approach Delay (s)		22.2			21.9			6.3			6.3	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM Average Control Delay			12.5	F	ICM Level	of Servic	е		В			
HCM Volume to Capacity ratio			0.46									
Actuated Cycle Length (s)			64.9	S	Sum of los	t time (s)			10.5			
Intersection Capacity Utilization	1		85.2%	10	CU Level of	of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: 27th St. & Telegraph Ave.

6	/1	6	12	01	4
<u> </u>	/ 1	U	~	•	

	٦	-	\mathbf{r}	1	-	•	1	1	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜ î≽		5	≜ 15-		٦	≜ 15-		5	4 14	
Volume (vph)	119	311	127	43	495	104	187	457	62	120	507	340
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.97		1.00	0.98		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3344		1770	3430		1766	3464		1765	3292	
Flt Permitted	0.95	1.00		0.95	1.00		0.27	1.00		0.43	1.00	
Satd. Flow (perm)	1770	3344		1770	3430		494	3464		795	3292	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	119	311	127	43	495	104	187	457	62	120	507	340
RTOR Reduction (vph)	0	51	0	0	22	0	0	11	0	0	121	0
Lane Group Flow (vph)	119	387	0	43	577	0	187	508	0	120	726	0
Confl. Peds. (#/hr)			20			12	9		6	6		9
Confl. Bikes (#/hr)			9			3			25			13
Turn Type	Prot			Prot			Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	7.9	23.4		4.6	20.1		43.5	43.5		43.5	43.5	
Effective Green, g (s)	8.4	22.9		5.1	19.6		45.0	45.0		45.0	45.0	
Actuated g/C Ratio	0.10	0.27		0.06	0.23		0.53	0.53		0.53	0.53	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	175	901		106	791		262	1834		421	1743	
v/s Ratio Prot	c0.07	c0.12		0.02	c0.17			0.15			0.22	
v/s Ratio Perm							c0.38			0.15		
v/c Ratio	0.68	0.43		0.41	0.73		0.71	0.28		0.29	0.42	
Uniform Delay, d1	37.0	25.7		38.5	30.3		15.1	11.0		11.1	12.1	
Progression Factor	1.00	1.00		0.93	1.36		0.95	0.84		0.89	0.86	
Incremental Delay, d2	8.3	0.1		0.9	2.8		14.9	0.4		1.7	0.7	
Delay (s)	45.3	25.8		36.5	44.0		29.4	9.6		11.6	11.1	
Level of Service	D	С		D	D		С	Α		В	В	
Approach Delay (s)		30.0			43.5			14.9			11.1	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM Average Control Dela	у		22.9	Н	CM Level	of Servic	е		С			
HCM Volume to Capacity ra	atio		0.74									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			16.0			
Intersection Capacity Utiliza	ation		73.2%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: Telegraph Ave. & 40th St.

8/26/2014

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	t	۲	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜1 4		5	≜1 5		5	41		5	≜1 2	
Volume (vph)	52	228	41	50	254	97	86	330	81	83	445	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.98		1.00	0.97		1.00	0.99	
Flpb, ped/bikes	0.95	1.00		0.97	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.98		1.00	0.96		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1688	3426		1709	3308		1770	3340		1770	3404	
Flt Permitted	0.46	1.00		0.55	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	816	3426		996	3308		1770	3340		1770	3404	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	52	228	41	50	254	97	86	330	81	83	445	90
RTOR Reduction (vph)	0	19	0	0	52	0	0	19	0	0	15	0
Lane Group Flow (vph)	52	250	0	50	299	0	86	392	0	83	520	0
Confl. Peds. (#/hr)	81		52	52		81			112			59
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	19.6	19.6		19.6	19.6		8.3	43.7		8.2	43.6	
Effective Green, g (s)	19.6	19.6		19.6	19.6		8.3	43.7		8.2	43.6	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.10	0.51		0.10	0.51	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	188	789		229	762		172	1717		170	1746	
v/s Ratio Prot		0.07			c0.09		c0.05	0.12		0.05	c0.15	
v/s Ratio Perm	0.06			0.05								
v/c Ratio	0.28	0.32		0.22	0.39		0.50	0.23		0.49	0.30	
Uniform Delay, d1	26.9	27.1		26.5	27.7		36.4	11.4		36.4	11.9	
Progression Factor	1.00	1.00		1.00	1.00		0.87	1.32		1.00	1.00	
Incremental Delay, d2	0.8	0.2		0.5	0.3		2.3	0.3		2.2	0.4	
Delay (s)	27.7	27.4		27.0	28.0		34.1	15.3		38.6	12.3	
Level of Service	С	С		С	С		С	В		D	В	
Approach Delay (s)		27.4			27.9			18.6			15.9	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.2	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.35									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	ation		63.3%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: Telegraph Ave. & W MacArthur Blvd.

8/26/2014

	≯	-	\mathbf{F}	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		-€ † ₽			-€¶\$		۲	∱1 ≱		ľ	A1⊅	
Volume (vph)	85	296	129	75	309	65	111	297	60	76	303	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		0.98	1.00	
Frt		0.96			0.98		1.00	0.97		1.00	0.96	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4767			4899		1749	3426		1738	3357	
Flt Permitted		0.77			0.75		0.51	1.00		0.54	1.00	
Satd. Flow (perm)		3709			3698		930	3426		985	3357	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	85	296	129	75	309	65	111	297	60	76	303	120
RTOR Reduction (vph)	0	102	0	0	51	0	0	9	0	0	23	0
Lane Group Flow (vph)	0	408	0	0	398	0	111	348	0	76	400	0
Confl. Peds. (#/hr)	34		41			34	21		29	29		21
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		17.9			17.9		56.6	56.6		56.6	56.6	
Effective Green, g (s)		17.9			17.9		56.6	56.6		56.6	56.6	
Actuated g/C Ratio		0.21			0.21		0.67	0.67		0.67	0.67	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		781			778		619	2281		655	2235	
v/s Ratio Prot								0.10			0.12	
v/s Ratio Perm		c0.11			0.11		c0.12			0.08		
v/c Ratio		0.52			0.51		0.18	0.15		0.12	0.18	
Uniform Delay, d1		29.8			29.7		5.4	5.3		5.1	5.4	
Progression Factor		1.18			1.00		1.00	1.00		1.26	1.47	
Incremental Delay, d2		0.3			0.2		0.6	0.1		0.4	0.2	
Delay (s)		35.3			29.9		6.0	5.4		6.8	8.1	
Level of Service		D			С		А	А		А	А	
Approach Delay (s)		35.3			29.9			5.6			7.9	
Approach LOS		D			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			19.7	Н	ICM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.28									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			15.5			
Intersection Capacity Utilizatio	n		77.6%	10	CU Level o	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: Telegraph Ave. & 27th St.

8/26/2014

	٦	-	$\mathbf{\hat{z}}$	∢	+	•	•	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4 16		5	≜ 15		5	≜ 15		ሻ	4 16	
Volume (vph)	251	309	113	39	222	99	64	329	31	54	347	112
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.95		1.00	0.99		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3381		1770	3335		1761	3488		1765	3381	
Flt Permitted	0.95	1.00		0.95	1.00		0.45	1.00		0.52	1.00	
Satd. Flow (perm)	1770	3381		1770	3335		832	3488		961	3381	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	251	309	113	39	222	99	64	329	31	54	347	112
RTOR Reduction (vph)	0	39	0	0	64	0	0	7	0	0	31	0
Lane Group Flow (vph)	251	383	0	39	257	0	64	353	0	54	428	0
Confl. Peds. (#/hr)			2			21	10		5	5		10
Confl. Bikes (#/hr)			5			3			4			27
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	15.7	29.4		4.5	18.2		37.6	37.6		37.6	37.6	
Effective Green, g (s)	16.2	28.9		5.0	17.7		39.1	39.1		39.1	39.1	
Actuated g/C Ratio	0.19	0.34		0.06	0.21		0.46	0.46		0.46	0.46	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	337	1149		104	694		382	1604		442	1555	
v/s Ratio Prot	c0.14	c0.11		0.02	0.08			0.10			c0.13	
v/s Ratio Perm							0.08			0.06		
v/c Ratio	0.74	0.33		0.38	0.37		0.17	0.22		0.12	0.28	
Uniform Delay, d1	32.5	20.9		38.5	28.9		13.4	13.8		13.1	14.2	
Progression Factor	1.00	1.00		1.20	0.80		1.27	1.29		1.00	1.00	
Incremental Delay, d2	7.6	0.1		0.8	0.1		0.9	0.3		0.6	0.4	
Delay (s)	40.1	20.9		47.2	23.1		18.0	18.1		13.7	14.6	
Level of Service	D	С		D	С		В	В		В	В	
Approach Delay (s)		28.1			25.7			18.1			14.5	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			22.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.40									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			12.0			
Intersection Capacity Utiliza	ition		68.1%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: Telegraph Ave. & 40th St.

8/26/2014

	۶	→	$\mathbf{\hat{z}}$	4	+	*	1	t	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜1 ≽		5	≜ 1≽		ሻ	≜ 1≽		5	≜ 16	
Volume (vph)	149	599	179	55	387	286	202	768	60	136	672	166
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.96		1.00	0.95		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.97	1.00		0.96	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.94		1.00	0.99		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1709	3295		1707	3143		1770	3474		1770	3398	
Flt Permitted	0.26	1.00		0.20	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	465	3295		351	3143		1770	3474		1770	3398	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	149	599	179	55	387	286	202	768	60	136	672	166
RTOR Reduction (vph)	0	35	0	0	167	0	0	7	0	0	26	0
Lane Group Flow (vph)	149	743	0	55	506	0	202	821	0	136	812	0
Confl. Peds. (#/hr)	93		122	122		93			86			39
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	25.5	25.5		25.5	25.5		12.1	30.8		10.2	28.9	
Effective Green, g (s)	25.5	25.5		25.5	25.5		12.1	30.8		10.2	28.9	
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.15	0.39		0.13	0.36	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	148	1050		111	1001		267	1337		225	1227	
v/s Ratio Prot		0.23			0.16		c0.11	0.24		0.08	c0.24	
v/s Ratio Perm	c0.32			0.16								
v/c Ratio	1.01	0.71		0.50	0.51		0.76	0.61		0.60	0.66	
Uniform Delay, d1	27.2	24.0		22.0	22.1		32.5	19.8		33.0	21.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	75.8	1.8		1.3	0.1		10.3	2.1		3.1	2.8	
Delay (s)	103.0	25.8		23.3	22.3		42.9	21.9		36.1	24.3	
Level of Service	F	С		С	С		D	С		D	С	
Approach Delay (s)		38.2			22.4			26.0			25.9	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			28.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.81									
Actuated Cycle Length (s)			80.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	ation		81.3%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: Telegraph Ave. & W MacArthur Blvd.

8/26/2014

	۶	-	\mathbf{F}	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		-€†¢			ፈተኩ		۲	A		۲	∱1 }	
Volume (vph)	145	353	196	116	277	98	209	535	59	176	548	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.98			0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes		0.99			1.00		0.99	1.00		0.99	1.00	
Frt		0.96			0.97		1.00	0.99		1.00	0.98	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4716			4798		1748	3472		1746	3453	
Flt Permitted		0.76			0.69		0.40	1.00		0.42	1.00	
Satd. Flow (perm)		3620			3369		735	3472		767	3453	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	145	353	196	116	277	98	209	535	59	176	548	80
RTOR Reduction (vph)	0	60	0	0	64	0	0	5	0	0	6	0
Lane Group Flow (vph)	0	634	0	0	427	0	209	589	0	176	622	0
Confl. Peds. (#/hr)	55		54	54		55	37		38	38		37
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		17.7			17.7		39.2	39.2		39.2	39.2	
Effective Green, g (s)		17.7			17.7		39.2	39.2		39.2	39.2	
Actuated g/C Ratio		0.26			0.26		0.58	0.58		0.58	0.58	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		950			884		427	2019		446	2008	
v/s Ratio Prot								0.17			0.18	
v/s Ratio Perm		c0.17			0.13		c0.28			0.23		
v/c Ratio		0.67			0.48		0.49	0.29		0.39	0.31	
Uniform Delay, d1		22.2			21.0		8.2	7.1		7.7	7.2	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		1.4			0.2		0.3	0.0		0.2	0.0	
Delay (s)		23.6			21.1		8.6	7.1		7.9	7.2	
Level of Service		С			С		А	А		А	А	
Approach Delay (s)		23.6			21.1			7.5			7.4	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			13.9	Н	ICM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.60									
Actuated Cycle Length (s)			67.4	S	um of lost	t time (s)			15.5			
Intersection Capacity Utilizatio	n		86.3%	10	CU Level o	of Service			Е			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: Telegraph Ave. & 27th St.

8/26/2014

	≯	-	$\mathbf{\hat{z}}$	∢	+	•	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜t ≽		5	≜1 ≽		5	≜ 16		5	≜ 16	
Volume (vph)	119	311	127	43	495	118	187	476	62	131	523	340
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.97		1.00	0.98		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3344		1770	3418		1766	3467		1765	3296	
Flt Permitted	0.95	1.00		0.95	1.00		0.26	1.00		0.42	1.00	
Satd. Flow (perm)	1770	3344		1770	3418		481	3467		774	3296	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adi, Flow (vph)	119	311	127	43	495	118	187	476	62	131	523	340
RTOR Reduction (vph)	0	51	0	0	25	0	0	10	0	0	113	0
Lane Group Flow (vph)	119	387	0	43	588	0	187	528	0	131	750	0
Confl. Peds. (#/hr)	-		20			12	9		6	6		9
Confl. Bikes (#/hr)			9			3			25			13
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases				-			2			6	-	
Actuated Green, G (s)	7.9	23.5		4.6	20.2		43.4	43.4		43.4	43.4	
Effective Green, g (s)	8.4	23.0		5.1	19.7		44.9	44.9		44.9	44.9	
Actuated g/C Ratio	0.10	0.27		0.06	0.23		0.53	0.53		0.53	0.53	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	174	904		106	792		254	1831		408	1741	
v/s Ratio Prot	c0.07	c0.12		0.02	c0.17			0.15			0.23	
v/s Ratio Perm							c0.39			0.17		
v/c Ratio	0.68	0.43		0.41	0.74		0.74	0.29		0.32	0.43	
Uniform Delay, d1	37.0	25.6		38.5	30.3		15.5	11.2		11.4	12.2	
Progression Factor	1.00	1.00		0.93	1.36		0.96	0.85		0.89	0.86	
Incremental Delay, d2	8.5	0.1		0.9	3.1		16.9	0.4		2.1	0.8	
Delay (s)	45.5	25.7		36.8	44.3		31.7	9.9		12.2	11.3	
Level of Service	D	С		D	D		С	А		В	В	
Approach Delay (s)		29.9			43.8			15.5			11.4	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			23.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.72									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilizat	tion		73.9%	IC	CU Level o	of Service	•		D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: Telegraph Ave. & 40th St.

8/26/2014

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	t	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4 1.		5	41 4		5	4 14		5	4 14	
Volume (vph)	204	485	273	81	517	130	135	350	51	90	879	270
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	0.97	1.00		0.99	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.97		1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1722	3273		1745	3371		1770	3410		1770	3351	
Flt Permitted	0.27	1.00		0.20	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	482	3273		362	3371		1770	3410		1770	3351	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	204	485	273	81	517	130	135	350	51	90	879	270
RTOR Reduction (vph)	0	92	0	0	26	0	0	12	0	0	33	0
Lane Group Flow (vph)	204	666	0	81	621	0	135	389	0	90	1116	0
Confl. Peds. (#/hr)	81		52	52		81			112			59
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	26.5	26.5		26.5	26.5		11.3	36.6		8.4	33.7	
Effective Green, g (s)	26.5	26.5		26.5	26.5		11.3	36.6		8.4	33.7	
Actuated g/C Ratio	0.31	0.31		0.31	0.31		0.13	0.43		0.10	0.40	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	150	1020		112	1050		235	1468		174	1328	
v/s Ratio Prot		0.20			0.18		c0.08	c0.11		0.05	c0.33	
v/s Ratio Perm	c0.42			0.22								
v/c Ratio	1.36	0.65		0.72	0.59		0.57	0.27		0.52	0.84	
Uniform Delay, d1	29.2	25.3		26.0	24.7		34.6	15.6		36.4	23.2	
Progression Factor	1.00	1.00		1.00	1.00		0.85	0.92		1.00	1.00	
Incremental Delay, d2	198.9	1.5		20.5	0.9		3.2	0.4		2.6	6.6	
Delay (s)	228.2	26.8		46.5	25.6		32.5	14.7		39.0	29.8	
Level of Service	F	С		D	С		С	В		D	С	
Approach Delay (s)		69.5			27.9			19.2			30.4	
Approach LOS		E			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			39.0	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.98									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	ation		89.3%	IC	U Level o	of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: Telegraph Ave. & W MacArthur Blvd.

8/26/2014

	۶	-	\mathbf{F}	4	+	•	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€1 †Ъ			ፈተኩ		۲	A		ľ	A1⊅	
Volume (vph)	64	962	213	60	374	81	200	441	150	390	751	106
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		0.99	1.00	
Frt		0.97			0.98		1.00	0.96		1.00	0.98	
Flt Protected		1.00			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4889			4899		1760	3369		1748	3459	
Flt Permitted		0.87			0.71		0.26	1.00		0.39	1.00	
Satd. Flow (perm)		4265			3479		483	3369		720	3459	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	64	962	213	60	374	81	200	441	150	390	751	106
RTOR Reduction (vph)	0	43	0	0	47	0	0	28	0	0	9	0
Lane Group Flow (vph)	0	1196	0	0	468	0	200	563	0	390	848	0
Confl. Peds. (#/hr)	34		41			34	21		29	29		21
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		31.5			31.5		43.0	43.0		43.0	43.0	
Effective Green, g (s)		31.5			31.5		43.0	43.0		43.0	43.0	
Actuated g/C Ratio		0.37			0.37		0.51	0.51		0.51	0.51	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		1580			1289		244	1704		364	1749	
v/s Ratio Prot								0.17			0.25	
v/s Ratio Perm		c0.28			0.13		0.41			c0.54		
v/c Ratio		0.76			0.36		0.82	0.33		1.07	0.48	
Uniform Delay, d1		23.4			19.5		17.7	12.5		21.0	13.7	
Progression Factor		1.15			1.00		1.00	1.00		1.05	0.93	
Incremental Delay, d2		1.8			0.1		25.5	0.5		56.8	0.6	
Delay (s)		28.8			19.5		43.2	13.0		78.7	13.4	
Level of Service		С			В		D	В		E	В	
Approach Delay (s)		28.8			19.5			20.6			33.8	
Approach LOS		С			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			27.5	Н	ICM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		1.01									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			15.5			
Intersection Capacity Utilization	1		101.6%	IC	CU Level o	of Service			G			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: Telegraph Ave. & 27th St.

8/26/2014

	٦	-	$\mathbf{\hat{z}}$	∢	+	•	٠	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	≜1 ≱		7	A1≱		ľ	≜1 ≱		7	≜1 ≱	
Volume (vph)	290	460	150	90	620	233	100	412	60	141	564	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3392		1770	3346		1763	3462		1763	3350	
Flt Permitted	0.95	1.00		0.95	1.00		0.24	1.00		0.42	1.00	
Satd. Flow (perm)	1770	3392		1770	3346		438	3462		776	3350	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	290	460	150	90	620	233	100	412	60	141	564	210
RTOR Reduction (vph)	0	31	0	0	45	0	0	13	0	0	44	0
Lane Group Flow (vph)	290	579	0	90	808	0	100	459	0	141	730	0
Confl. Peds. (#/hr)			3			32	15		8	8		15
Confl. Bikes (#/hr)			8			5			6			41
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	16.9	32.4		7.7	23.2		31.4	31.4		31.4	31.4	
Effective Green, g (s)	17.4	31.9		8.2	22.7		32.9	32.9		32.9	32.9	
Actuated g/C Ratio	0.20	0.38		0.10	0.27		0.39	0.39		0.39	0.39	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	362	1272		170	893		169	1339		300	1296	
v/s Ratio Prot	c0.16	0.17		0.05	c0.24			0.13			0.22	
v/s Ratio Perm							c0.23			0.18		
v/c Ratio	0.80	0.46		0.53	0.90		0.59	0.34		0.47	0.56	
Uniform Delay, d1	32.2	20.0		36.6	30.1		20.7	18.4		19.5	20.4	
Progression Factor	1.00	1.00		1.06	1.10		1.16	1.17		1.00	1.00	
Incremental Delay, d2	11.4	0.1		0.6	5.8		13.5	0.7		5.2	1.8	
Delay (s)	43.5	20.1		39.2	39.0		37.6	22.3		24.7	22.2	
Level of Service	D	C		D	D		D	C		C	C	
Approach Delay (s)		27.6			39.1			24.9			22.6	
Approach LOS		С			D			C			C	
Intersection Summary												
HCM 2000 Control Delay			29.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.74									
Actuated Cycle Length (s)			85.0	S	um of lost	t time (s)			12.0			
Intersection Capacity Utiliza	ation		85.1%	IC	CU Level o	ot Service	•		E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: Telegraph Ave. & 40th St.

8/26/2014

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	1	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜1 6		5	41		5	41		5	41	
Volume (vph)	301	922	371	75	683	370	484	1228	56	170	838	275
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.93		1.00	0.94		1.00	0.99		1.00	0.98	
Flpb, ped/bikes	0.98	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.95		1.00	0.99		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1735	3166		1770	3145		1770	3493		1770	3345	
Flt Permitted	0.16	1.00		0.16	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	286	3166		292	3145		1770	3493		1770	3345	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	301	922	371	75	683	370	484	1228	56	170	838	275
RTOR Reduction (vph)	0	54	0	0	91	0	0	4	0	0	12	0
Lane Group Flow (vph)	301	1239	0	75	962	0	484	1280	0	170	1101	0
Confl. Peds. (#/hr)	140		183	183		140			129			59
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	25.5	25.5		25.5	25.5		13.5	29.8		11.2	27.5	
Effective Green, g (s)	25.5	25.5		25.5	25.5		13.5	29.8		11.2	27.5	
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.17	0.37		0.14	0.34	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	91	1009		93	1002		298	1301		247	1149	
v/s Ratio Prot		0.39			0.31		c0.27	c0.37		0.10	0.33	
v/s Ratio Perm	c1.05			0.26								
v/c Ratio	3.31	1.23		0.81	0.96		1.62	0.98		0.69	0.96	
Uniform Delay, d1	27.2	27.2		25.0	26.8		33.2	24.9		32.7	25.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	1066.1	111.5		36.4	19.4		295.8	21.4		6.2	18.2	
Delay (s)	1093.3	138.7		61.4	46.1		329.0	46.3		39.0	43.9	
Level of Service	F	F		E	D		F	D		D	D	
Approach Delay (s)		319.0			47.2			123.7			43.2	
Approach LOS		F			D			F			D	
Intersection Summary												
HCM 2000 Control Delay			144.8	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		2.03									
Actuated Cycle Length (s)			80.0	Si	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	tion		124.7%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: Telegraph Ave. & W MacArthur Blvd.

8/26/2014

	≯	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ፈቶኩ			ፈቶኩ		5	4 14		5	≜ t≽	
Volume (vph)	112	705	319	200	816	334	310	1173	80	313	807	190
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.97			0.97		1.00	1.00		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		0.99	1.00	
Frt		0.96			0.96		1.00	0.99		1.00	0.97	
Flt Protected		1.00			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4702			4723		1751	3489		1760	3392	
Flt Permitted		0.65			0.65		0.18	1.00		0.10	1.00	
Satd. Flow (perm)		3085			3099		325	3489		190	3392	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adi, Flow (vph)	112	705	319	200	816	334	310	1173	80	313	807	190
RTOR Reduction (vph)	0	46	0	0	3	0	0	3	0	0	14	0
Lane Group Flow (vph)	0	1090	0	0	1347	0	310	1250	0	313	983	0
Confl. Peds. (#/hr)	83		81	81		83	56		57	57		56
	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	-	4		3	8		-	2		-	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		38.3		-	38.3		39.0	39.0		39.0	39.0	
Effective Green, q (s)		38.3			38.3		39.0	39.0		39.0	39.0	
Actuated q/C Ratio		0.44			0.44		0.44	0.44		0.44	0.44	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		1345			1351		144	1549		84	1506	
v/s Ratio Prot								0.36			0.29	
v/s Ratio Perm		0.35			c0.43		0.95			c1.65		
v/c Ratio		0.81			1.39dl		2.15	0.81		3.73	0.65	
Uniform Delay, d1		21.6			24.7		24.4	21.1		24.4	19.1	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		3.6			23.6		541.1	3.0		1255.4	0.8	
Delay (s)		25.2			48.3		565.5	24.1		1279.8	19.9	
Level of Service		С			D		F	С		F	В	
Approach Delay (s)		25.2			48.3			131.5			320.9	
Approach LOS		С			D			F			F	
Intersection Summary												
HCM 2000 Control Delay			13/1 3	F	ICM 2000	Level of	Service		F			
HCM 2000 Volume to Capacit	v ratio		2 53	1		Level OI	Dervice		I			
Actuated Cycle Length (s)	y raio		87.8	Q	um of los	t time (s)			15 5			
Intersection Canacity I Itilization	n		123.3%	10		of Service			13.3 H			
Analysis Period (min)	/1		15	N			,		11			
d Defacto Left Lane Recor	de with 1	though la	ine as a	eft lane								
c Critical Lane Group		aleagina										

HCM Signalized Intersection Capacity Analysis 3: Telegraph Ave. & 27th St.

	٦	-	\mathbf{r}	4	-	*	1	1	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜t ≽		ሻ	≜ 1≽		5	≜ 16		ሻ	≜ 1≽	
Volume (vph)	200	640	160	90	690	386	230	781	170	429	844	400
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.95		1.00	0.97		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3395		1770	3305		1767	3421		1767	3331	
Flt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.20	1.00	
Satd. Flow (perm)	1770	3395		1770	3305		188	3421		371	3331	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	200	640	160	90	690	386	230	781	170	429	844	400
RTOR Reduction (vph)	0	24	0	0	88	0	0	22	0	0	68	0
Lane Group Flow (vph)	200	776	0	90	988	0	230	929	0	429	1176	0
Confl. Peds. (#/hr)			30			18	14		9	9		14
Confl. Bikes (#/hr)			14			5			38			20
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	9.8	26.1		7.1	23.4		38.3	38.3		38.3	38.3	
Effective Green, g (s)	10.3	25.6		7.6	22.9		39.8	39.8		39.8	39.8	
Actuated g/C Ratio	0.12	0.30		0.09	0.27		0.47	0.47		0.47	0.47	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	214	1022		158	890		88	1601		173	1559	
v/s Ratio Prot	c0.11	c0.23		0.05	c0.30			0.27			0.35	
v/s Ratio Perm							c1.22			1.16		
v/c Ratio	0.93	0.76		0.57	1.11		2.61	0.58		2.48	0.75	
Uniform Delay, d1	37.0	26.9		37.1	31.1		22.6	16.5		22.6	18.6	
Progression Factor	1.00	1.00		0.89	1.29		0.99	0.90		0.86	0.89	
Incremental Delay, d2	42.8	2.9		0.3	51.5		748.6	1.1		681.7	3.2	
Delay (s)	79.8	29.8		33.4	91.6		770.9	15.9		701.2	19.8	
Level of Service	E	С		С	F		F	В		F	В	
Approach Delay (s)		39.8			87.1			163.0			194.5	
Approach LOS		D			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			131.3	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.89									
Actuated Cycle Length (s)	-		85.0	S	um of lost	time (s)			12.0			
Intersection Capacity Utilizat	ion		107.4%	IC	CU Level o	of Service)		G			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: 40th St. & Telegraph Ave.

6	/1	6	12	01	4
<u> </u>	/ 1	U	~	•	

	۶	-	\mathbf{r}	4	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜t ≽		5	≜ 1≽		5	≜ 16		5	≜1 5	
Volume (vph)	190	480	260	90	520	130	150	390	70	90	920	250
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	0.97	1.00		0.99	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.97		1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1723	3280		1745	3371		1770	3385		1770	3368	
Flt Permitted	0.26	1.00		0.21	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	478	3280		381	3371		1770	3385		1770	3368	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	190	480	260	90	520	130	150	390	70	90	920	250
RTOR Reduction (vph)	0	85	0	0	26	0	0	15	0	0	28	0
Lane Group Flow (vph)	190	655	0	90	624	0	150	445	0	90	1142	0
Confl. Peds. (#/hr)	81		52	52		81			112			59
Turn Type	Perm			Perm			Prot			Prot		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	26.5	26.5		26.5	26.5		11.7	36.6		8.4	33.3	
Effective Green, g (s)	26.5	26.5		26.5	26.5		11.7	36.6		8.4	33.3	
Actuated g/C Ratio	0.31	0.31		0.31	0.31		0.14	0.43		0.10	0.39	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	149	1023		119	1051		244	1458		175	1319	
v/s Ratio Prot		0.20			0.19		c0.08	c0.13		0.05	c0.34	
v/s Ratio Perm	c0.40			0.24								
v/c Ratio	1.28	0.64		0.76	0.59		0.61	0.30		0.51	0.87	
Uniform Delay, d1	29.2	25.1		26.3	24.7		34.5	15.9		36.4	23.8	
Progression Factor	1.00	1.00		1.00	1.00		0.89	0.94		1.00	1.00	
Incremental Delay, d2	165.7	1.3		23.6	0.9		4.2	0.5		2.5	7.8	
Delay (s)	194.9	26.5		49.9	25.6		34.8	15.4		38.9	31.6	
Level of Service	F	С		D	С		С	В		D	С	
Approach Delay (s)		60.9			28.6			20.2			32.1	
Approach LOS		E			С			С			С	
Intersection Summary												
HCM Average Control Delay	,		36.9	H	CM Level	of Service	е		D			
HCM Volume to Capacity rat	tio		1.03									
Actuated Cycle Length (s)			85.0	Si	um of lost	t time (s)			18.0			
Intersection Capacity Utilizat	ion		89.7%	IC	U Level o	of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: W MacArthur Blvd. & Telegraph Ave.

6/16/2014

	۶	-	\mathbf{F}	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		.₫ ≜ Ъ			aî≜t≽		5	≜t ≽		5	≜ 16	
Volume (vph)	110	970	220	60	390	70	220	440	150	390	770	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		0.99	1.00	
Frt		0.97			0.98		1.00	0.96		1.00	0.97	
Flt Protected		1.00			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4881			4921		1762	3369		1749	3423	
Flt Permitted		0.82			0.71		0.21	1.00		0.38	1.00	
Satd. Flow (perm)		4008			3513		398	3369		706	3423	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	110	970	220	60	390	70	220	440	150	390	770	170
RTOR Reduction (vph)	0	40	0	0	35	0	0	29	0	0	17	0
Lane Group Flow (vph)	0	1260	0	0	485	0	220	561	0	390	923	0
Confl. Peds. (#/hr)	34		41			34	21		29	29		21
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		34.1			34.1		40.4	40.4		40.4	40.4	
Effective Green, g (s)		34.1			34.1		40.4	40.4		40.4	40.4	
Actuated g/C Ratio		0.40			0.40		0.48	0.48		0.48	0.48	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		1608			1409		189	1601		336	1627	
v/s Ratio Prot								0.17			0.27	
v/s Ratio Perm		c0.31			0.14		c0.55			0.55		
v/c Ratio		0.78			0.34		1.16	0.35		1.16	0.57	
Uniform Delay, d1		22.2			17.7		22.3	14.0		22.3	16.0	
Progression Factor		1.12			1.00		1.00	1.00		1.05	0.97	
Incremental Delay, d2		2.3			0.1		116.6	0.6		90.7	0.9	
Delay (s)		27.2			17.7		138.9	14.6		114.1	16.4	
Level of Service		С			В		F	В		F	В	
Approach Delay (s)		27.2			17.7			48.4			45.1	
Approach LOS		С			В			D			D	
Intersection Summary												
HCM Average Control Delay			36.3	F	ICM Level	of Servic	е		D			
HCM Volume to Capacity ratio			0.99									
Actuated Cycle Length (s)			85.0	S	um of los	t time (s)			10.5			
Intersection Capacity Utilization	۱		102.9%	10	CU Level of	of Service			G			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: 27th St. & Telegraph Ave.

6/16/2014	1
-----------	---

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	.↓	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	† 12		5	≜ 15-		5	At≱		5	4 14	
Volume (vph)	290	460	150	90	620	240	100	420	60	150	580	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3392		1770	3342		1763	3463		1763	3354	
Flt Permitted	0.95	1.00		0.95	1.00		0.23	1.00		0.41	1.00	
Satd. Flow (perm)	1770	3392		1770	3342		423	3463		765	3354	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	290	460	150	90	620	240	100	420	60	150	580	210
RTOR Reduction (vph)	0	31	0	0	47	0	0	13	0	0	42	0
Lane Group Flow (vph)	290	579	0	90	813	0	100	467	0	150	748	0
Confl. Peds. (#/hr)			3			32	15		8	8		15
Confl. Bikes (#/hr)			8			5			6			41
Turn Type	Prot			Prot			Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	16.9	32.4		7.7	23.2		31.4	31.4		31.4	31.4	
Effective Green, g (s)	17.4	31.9		8.2	22.7		32.9	32.9		32.9	32.9	
Actuated g/C Ratio	0.20	0.38		0.10	0.27		0.39	0.39		0.39	0.39	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	362	1273		171	893		164	1340		296	1298	
v/s Ratio Prot	c0.16	0.17		0.05	c0.24			0.13			0.22	
v/s Ratio Perm							c0.24			0.20		
v/c Ratio	0.80	0.45		0.53	0.91		0.61	0.35		0.51	0.58	
Uniform Delay, d1	32.2	20.0		36.6	30.2		20.9	18.5		19.9	20.6	
Progression Factor	1.00	1.00		1.05	1.10		1.15	1.17		1.00	1.00	
Incremental Delay, d2	11.4	0.1		0.6	6.3		14.9	0.7		6.1	1.9	
Delay (s)	43.5	20.1		39.1	39.6		39.0	22.3		25.9	22.4	
Level of Service	D	С		D	D		D	С		С	С	
Approach Delay (s)		27.6			39.5			25.2			23.0	
Approach LOS		С			D			С			С	
Intersection Summary												
HCM Average Control Dela	ау		29.3	Н	CM Level	of Servic	e		С			
HCM Volume to Capacity ra	atio		0.75									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			12.0			
Intersection Capacity Utiliza	ation		85.8%	IC	CU Level o	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: 40th St. & Telegraph Ave.

6	/1	6	12	01	4
<u> </u>	/ 1	U	~	•	

	۶	-	\mathbf{i}	•	←	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4 14		5	≜ 1≽		5	≜ 1≽		5	≜ 1≽	
Volume (vph)	270	920	360	90	690	370	480	1290	80	170	900	260
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.94		1.00	0.94		1.00	0.99		1.00	0.98	
Flpb, ped/bikes	0.98	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.95		1.00	0.99		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1735	3173		1770	3147		1770	3478		1770	3363	
FIt Permitted	0.16	1.00		0.16	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	287	3173		292	3147		1770	3478		1770	3363	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	270	920	360	90	690	370	480	1290	80	170	900	260
RTOR Reduction (vph)	0	52	0	0	89	0	0	6	0	0	12	0
Lane Group Flow (vph)	270	1228	0	90	971	0	480	1364	0	170	1148	0
Confl. Peds. (#/hr)	140		183	183		140			129			59
Turn Type	Perm			Perm			Prot			Prot		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	25.5	25.5		25.5	25.5		13.5	29.8		11.2	27.5	
Effective Green, g (s)	25.5	25.5		25.5	25.5		13.5	29.8		11.2	27.5	
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.17	0.37		0.14	0.34	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	91	1011		93	1003		299	1296		248	1156	
v/s Ratio Prot		0.39			0.31		c0.27	c0.39		0.10	0.34	
v/s Ratio Perm	c0.94			0.31								
v/c Ratio	2.97	1.21		0.97	0.97		1.61	1.05		0.69	0.99	
Uniform Delay, d1	27.2	27.2		26.8	26.9		33.2	25.1		32.7	26.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	914.1	105.9		81.5	20.8		287.5	40.1		6.1	24.8	
Delay (s)	941.3	133.1		108.3	47.6		320.8	65.2		38.9	50.9	
Level of Service	F	F		F	D		F	E		D	D	
Approach Delay (s)		273.9			52.4			131.5			49.4	
Approach LOS		F			D			F			D	
Intersection Summary												
HCM Average Control Delay			135.0	H	CM Level	of Servic	е		F			
HCM Volume to Capacity ration	0		1.80									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization	on		124.1%	IC	CU Level o	of Service			Н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: W MacArthur Blvd. & Telegraph Ave.

6/16/2014

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Image: Additional stress of the stres		۶	-	\mathbf{F}	4	+	•	•	t	1	1	Ļ	~
Lane Configurations Image: Configuration in the image: Configuratination in the image: Configuration in the image: Configuration i	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph) 200 740 350 200 820 340 320 1200 80 290 810 200 Ideal Flow (vphpl) 1900	Lane Configurations		ፈተኩ			ፈቶኩ		۲.	A		۲	¥î≽	
Ideal Flow (vphpl) 1900 <td>Volume (vph)</td> <td>200</td> <td>740</td> <td>350</td> <td>200</td> <td>820</td> <td>340</td> <td>320</td> <td>1200</td> <td>80</td> <td>290</td> <td>810</td> <td>200</td>	Volume (vph)	200	740	350	200	820	340	320	1200	80	290	810	200
Total Lost time (s) 5.5 5.5 5.0 5.0 5.0 5.0 Lane Util. Factor 0.91 0.91 1.00 0.95 1.00 0.95 Frpb, ped/bikes 0.97 0.97 1.00 1.00 0.99 1.00 0.99 Flpb, ped/bikes 1.00 1.00 0.99 1.00 0.99 1.00 0.99 Flt 0.96 0.96 1.00 0.99 1.00 0.97 Flt Protected 0.99 0.99 0.95 1.00 0.97 Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor 0.91 0.91 1.00 0.95 1.00 0.95 Frpb, ped/bikes 0.97 0.97 1.00 1.00 0.99 1.00 0.99 Flpb, ped/bikes 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 Frt 0.96 0.96 1.00 0.99 1.00 0.97 Flt Protected 0.99 0.99 0.95 1.00 0.95 1.00 Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00	Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Frpb, ped/bikes 0.97 0.97 1.00 1.00 0.99 Flpb, ped/bikes 1.00 1.00 0.99 1.00 0.99 1.00 Frt 0.96 0.96 1.00 0.99 1.00 0.97 Flt Protected 0.99 0.99 0.95 1.00 0.95 1.00 Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00 </td <td>Lane Util. Factor</td> <td></td> <td>0.91</td> <td></td> <td></td> <td>0.91</td> <td></td> <td>1.00</td> <td>0.95</td> <td></td> <td>1.00</td> <td>0.95</td> <td></td>	Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Flpb, ped/bikes 1.00 1.00 0.99 1.00 0.99 1.00 Frt 0.96 0.96 1.00 0.99 1.00 0.97 Flt Protected 0.99 0.99 0.95 1.00 0.95 1.00 Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00	Frpb, ped/bikes		0.97			0.97		1.00	1.00		1.00	0.99	
Frt 0.96 0.96 1.00 0.99 1.00 0.97 Flt Protected 0.99 0.99 0.95 1.00 0.95 1.00 Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00	Flpb, ped/bikes		1.00			1.00		0.99	1.00		0.99	1.00	
Flt Protected 0.99 0.99 0.95 1.00 0.95 1.00 Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00	Frt		0.96			0.96		1.00	0.99		1.00	0.97	
Satd. Flow (prot) 4698 4723 1752 3491 1760 3387 Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00 1.	Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Flt Permitted 0.65 0.65 0.17 1.00 0.10 1.00 Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00 <th1< td=""><td>Satd. Flow (prot)</td><td></td><td>4698</td><td></td><td></td><td>4723</td><td></td><td>1752</td><td>3491</td><td></td><td>1760</td><td>3387</td><td></td></th1<>	Satd. Flow (prot)		4698			4723		1752	3491		1760	3387	
Satd. Flow (perm) 3084 3086 316 3491 190 3387 Peak-hour factor, PHF 1.00	Flt Permitted		0.65			0.65		0.17	1.00		0.10	1.00	
Peak-hour factor, PHF 1.00	Satd. Flow (perm)		3084			3086		316	3491		190	3387	
Adj. Flow (vph) 200 740 350 200 820 340 320 1200 80 290 810 200 RTOR Reduction (vph) 0 43 0 0 2 0 0 3 0 0 15 0 Lane Group Flow (vph) 0 1247 0 0 1358 0 320 1277 0 290 995 0 Confl. Peds. (#/hr) 83 81 81 83 56 57 57 56 Turn Type Perm pm+pt Perm Perm Perm Perm 100 10	Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
RTOR Reduction (vph) 0 43 0 0 2 0 0 3 0 0 15 0 Lane Group Flow (vph) 0 1247 0 0 1358 0 320 1277 0 290 995 0 Confl. Peds. (#/hr) 83 81 81 83 56 57 57 56 Turn Type Perm pm+pt Perm Perm Protected Phases 4 3 8 2 6 Actuated Green, G (s) 38.3 38.3 39.0 39.0 39.0 39.0 Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	Adj. Flow (vph)	200	740	350	200	820	340	320	1200	80	290	810	200
Lane Group Flow (vph) 0 1247 0 0 1358 0 320 1277 0 290 995 0 Confl. Peds. (#/hr) 83 81 81 83 56 57 57 56 Turn Type Perm pm+pt Perm Perm Protected Phases 4 3 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 38.3 38.3 39.0 39.0 39.0 Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	RTOR Reduction (vph)	0	43	0	0	2	0	0	3	0	0	15	0
Confl. Peds. (#/hr) 83 81 81 83 56 57 57 56 Turn Type Perm pm+pt Perm Perm Perm Protected Phases 4 3 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 38.3 38.3 39.0 39.0 39.0 Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	Lane Group Flow (vph)	0	1247	0	0	1358	0	320	1277	0	290	995	0
Turn Type Perm Perm Perm Protected Phases 4 3 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 38.3 38.3 39.0 39.0 39.0 Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	Confl. Peds. (#/hr)	83		81	81		83	56		57	57		56
Protected Phases 4 3 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 38.3 38.3 39.0 39.0 39.0 Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	Turn Type	Perm			pm+pt			Perm			Perm		
Permitted Phases 4 8 2 6 Actuated Green, G (s) 38.3 38.3 39.0 39.0 39.0 Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	Protected Phases		4		3	8			2			6	
Actuated Green, G (s)38.338.339.039.039.039.0Effective Green, g (s)38.338.339.039.039.039.0	Permitted Phases	4			8			2			6		
Effective Green, g (s) 38.3 38.3 39.0 39.0 39.0 39.0	Actuated Green, G (s)		38.3			38.3		39.0	39.0		39.0	39.0	
	Effective Green, g (s)		38.3			38.3		39.0	39.0		39.0	39.0	
Actuated g/C Ratio 0.44 0.44 0.44 0.44 0.44 0.44	Actuated g/C Ratio		0.44			0.44		0.44	0.44		0.44	0.44	
Clearance Time (s) 5.5 5.5 5.0 5.0 5.0 5.0	Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s) 2.0 2.0 2.0 2.0 2.0 2.0	Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph) 1345 1346 140 1551 84 1504	Lane Grp Cap (vph)		1345			1346		140	1551		84	1504	
v/s Ratio Prot 0.37 0.29	v/s Ratio Prot								0.37			0.29	
v/s Ratio Perm 0.40 c0.44 1.01 c1.53	v/s Ratio Perm		0.40			c0.44		1.01			c1.53		
v/c Ratio 1.45dl 1.80dl 2.29 0.82 3.45 0.66	v/c Ratio		1.45dl			1.80dl		2.29	0.82		3.45	0.66	
Uniform Delay, d1 23.4 24.8 24.4 21.4 24.4 19.2	Uniform Delay, d1		23.4			24.8		24.4	21.4		24.4	19.2	
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00	Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2 10.9 26.7 600.6 3.5 1133.0 0.9	Incremental Delay, d2		10.9			26.7		600.6	3.5		1133.0	0.9	
Delay (s) 34.3 51.4 625.0 24.9 1157.4 20.1	Delay (s)		34.3			51.4		625.0	24.9		1157.4	20.1	
Level of Service C D F C F C	Level of Service		С			D		F	С		F	С	
Approach Delay (s) 34.3 51.4 144.9 273.8	Approach Delay (s)		34.3			51.4			144.9			273.8	
Approach LOS C D F F	Approach LOS		С			D			F			F	
Intersection Summary	Intersection Summary												
HCM Average Control Delay 126.5 HCM Level of Service E	HCM Average Central Delay			126.5	L		of Sonvio			E			
HCM Volume to Capacity ratio 2.23	HCM Volume to Capacity ratio			120.0	Г			e		Г			
Actuated Cuelo Loneth (a) 27.2 Cum of lest time (a) 10.5	Actuated Cycle Length (a)			2.23	c	um of loo	time (a)			10 5			
Intersection Capacity Utilization 126.10/ ICLU avail of Service U	Intersection Consolity Utilization			126 10/	2		of Sorvice			10.3			
	Analysis Pariod (min)	I		120.1%	I	CO Level (П			
Analysis Foliou (IIIII) 15 dl. Defacto Laft Lane, Recode with 1 though lane as a laft lane	d Defacto Left Long Decode	with 1	though lo	no ac o l	oft lano								
c Critical Lane Group	c Critical Lane Group	> WILLI I	alouyirid										

HCM Signalized Intersection Capacity Analysis 3: 27th St. & Telegraph Ave.

6/16/2014

	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ 1≽		5	≜ 1≽		5	4 14		ሻ	≜t ≽	
Volume (vph)	200	640	160	90	690	400	230	800	170	440	860	400
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.94		1.00	0.97		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3395		1770	3300		1767	3423		1767	3334	
Flt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.19	1.00	
Satd. Flow (perm)	1770	3395		1770	3300		186	3423		360	3334	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	200	640	160	90	690	400	230	800	170	440	860	400
RTOR Reduction (vph)	0	25	0	0	85	0	0	22	0	0	66	0
Lane Group Flow (vph)	200	775	0	90	1005	0	230	948	0	440	1194	0
Confl. Peds. (#/hr)			30			18	14		9	9		14
Confl. Bikes (#/hr)			14			5			38			20
Turn Type	Prot			Prot			Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	9.5	25.9		7.0	23.4		38.6	38.6		38.6	38.6	
Effective Green, g (s)	10.0	25.4		7.5	22.9		40.1	40.1		40.1	40.1	
Actuated g/C Ratio	0.12	0.30		0.09	0.27		0.47	0.47		0.47	0.47	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	208	1015		156	889		88	1615		170	1573	
v/s Ratio Prot	c0.11	0.23		0.05	c0.30			0.28			0.36	
v/s Ratio Perm							c1.24			1.22		
v/c Ratio	0.96	0.76		0.58	1.13		2.61	0.59		2.59	0.76	
Uniform Delay, d1	37.3	27.1		37.2	31.1		22.4	16.4		22.4	18.5	
Progression Factor	1.00	1.00		0.89	1.28		0.98	0.90		0.86	0.89	
Incremental Delay, d2	50.9	3.1		0.3	60.4		748.9	1.1		730.4	3.3	
Delay (s)	88.2	30.2		33.3	100.2		770.8	15.8		749.8	19.8	
Level of Service	F	С		С	F		F	В		F	В	
Approach Delay (s)		41.8			95.1			160.6			208.7	
Approach LOS		D			F			F			F	
Intersection Summary												
HCM Average Control Delay	у		138.1	Н	CM Level	of Servic	е		F			
HCM Volume to Capacity ra	atio		1.91									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			12.0			
Intersection Capacity Utiliza	ation		109.0%	IC	CU Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: 40th St. & Telegraph Ave.

6/16/2014

	۶	-	$\mathbf{\hat{z}}$	1	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜ 1≽		5	≜ 16		ሻ	≜ 16		5	≜ 15	
Volume (vph)	190	480	260	90	520	130	150	390	70	90	920	250
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.5		4.0	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.97		1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1761	3280		1766	3371		1770	3385		1770	3368	
Flt Permitted	0.23	1.00		0.19	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	425	3280		360	3371		1770	3385		1770	3368	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	190	480	260	90	520	130	150	390	70	90	920	250
RTOR Reduction (vph)	0	88	0	0	27	0	0	16	0	0	28	0
Lane Group Flow (vph)	190	652	0	90	623	0	150	444	0	90	1142	0
Confl. Peds. (#/hr)	81		52	52		81			112			59
Turn Type	pm+pt			pm+pt			Prot			Prot		
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	28.6	24.6		27.0	23.8		8.1	32.2		7.5	31.6	
Effective Green, g (s)	28.6	24.6		27.0	23.8		8.1	32.2		7.5	31.6	
Actuated g/C Ratio	0.34	0.29		0.32	0.28		0.10	0.38		0.09	0.37	
Clearance Time (s)	4.0	4.5		4.0	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	206	949		167	944		169	1282		156	1252	
v/s Ratio Prot	c0.04	0.20		0.02	0.18		c0.08	0.13		0.05	c0.34	
v/s Ratio Perm	c0.27			0.15								
v/c Ratio	0.92	0.69		0.54	0.66		0.89	0.35		0.58	0.91	
Uniform Delay, d1	26.5	26.8		21.7	27.0		38.0	18.9		37.2	25.4	
Progression Factor	1.00	1.00		1.00	1.00		0.76	0.94		1.00	1.00	
Incremental Delay, d2	41.4	2.1		3.3	1.7		36.6	0.7		5.1	11.6	
Delay (s)	67.9	28.9		25.0	28.7		65.6	18.5		42.3	37.0	
Level of Service	E	С		С	С		E	В		D	D	
Approach Delay (s)		36.8			28.3			30.1			37.3	
Approach LOS		D			С			С			D	
Intersection Summary												
HCM Average Control Delay	/		34.1	H	CM Level	of Servic	е		С			
HCM Volume to Capacity ra	tio		0.87									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			13.0			
Intersection Capacity Utilization	tion		89.3%	IC	U Level o	of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: W MacArthur Blvd. & Telegraph Ave.

6/16/2014

	۶	-	\mathbf{F}	4	+	×	٩.	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		.₫ ≜ Ъ			aî≜t≽		5	≜ 15		5	≜t ⊾	
Volume (vph)	110	970	220	60	390	70	220	440	150	390	770	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		0.99	1.00	
Frt		0.97			0.98		1.00	0.96		1.00	0.97	
Flt Protected		1.00			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4881			4921		1762	3369		1749	3423	
Flt Permitted		0.82			0.71		0.21	1.00		0.38	1.00	
Satd. Flow (perm)		4008			3513		398	3369		706	3423	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	110	970	220	60	390	70	220	440	150	390	770	170
RTOR Reduction (vph)	0	40	0	0	35	0	0	29	0	0	17	0
Lane Group Flow (vph)	0	1260	0	0	485	0	220	561	0	390	923	0
Confl. Peds. (#/hr)	34		41			34	21		29	29		21
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		34.1			34.1		40.4	40.4		40.4	40.4	
Effective Green, g (s)		34.1			34.1		40.4	40.4		40.4	40.4	
Actuated g/C Ratio		0.40			0.40		0.48	0.48		0.48	0.48	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		1608			1409		189	1601		336	1627	
v/s Ratio Prot								0.17			0.27	
v/s Ratio Perm		c0.31			0.14		c0.55			0.55		
v/c Ratio		0.78			0.34		1.16	0.35		1.16	0.57	
Uniform Delay, d1		22.2			17.7		22.3	14.0		22.3	16.0	
Progression Factor		1.12			1.00		1.00	1.00		0.91	0.84	
Incremental Delay, d2		2.3			0.1		116.6	0.6		90.8	0.9	
Delay (s)		27.2			17.7		138.9	14.6		111.0	14.4	
Level of Service		С			В		F	В		F	В	
Approach Delay (s)		27.2			17.7			48.4			42.7	
Approach LOS		С			В			D			D	
Intersection Summary												
HCM Average Control Delay			35.5	Н	ICM Level	of Servic	e		D			
HCM Volume to Capacity ratio			0.99									
Actuated Cycle Length (s)			85.0	S	um of los	t time (s)			10.5			
Intersection Capacity Utilization	۱		102.9%	10	CU Level of	of Service			G			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 3: 27th St. & Telegraph Ave.

6/16/2014	1
-----------	---

	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† 12		5	≜1 }		٦	4 15		۲	∱1 }	
Volume (vph)	290	460	150	90	620	240	100	420	60	150	580	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3392		1770	3342		1763	3463		1763	3354	
Flt Permitted	0.95	1.00		0.95	1.00		0.23	1.00		0.41	1.00	
Satd. Flow (perm)	1770	3392		1770	3342		423	3463		765	3354	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	290	460	150	90	620	240	100	420	60	150	580	210
RTOR Reduction (vph)	0	31	0	0	47	0	0	13	0	0	42	0
Lane Group Flow (vph)	290	579	0	90	813	0	100	467	0	150	748	0
Confl. Peds. (#/hr)			3			32	15		8	8		15
Confl. Bikes (#/hr)			8			5			6			41
Turn Type	Prot			Prot			Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	16.9	32.4		7.7	23.2		31.4	31.4		31.4	31.4	
Effective Green, g (s)	17.4	31.9		8.2	22.7		32.9	32.9		32.9	32.9	
Actuated g/C Ratio	0.20	0.38		0.10	0.27		0.39	0.39		0.39	0.39	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	362	1273		171	893		164	1340		296	1298	
v/s Ratio Prot	c0.16	0.17		0.05	c0.24			0.13			0.22	
v/s Ratio Perm							c0.24			0.20		
v/c Ratio	0.80	0.45		0.53	0.91		0.61	0.35		0.51	0.58	
Uniform Delay, d1	32.2	20.0		36.6	30.2		20.9	18.5		19.9	20.6	
Progression Factor	1.00	1.00		1.05	1.10		1.15	1.17		1.00	1.00	
Incremental Delay, d2	11.4	0.1		0.6	6.3		14.9	0.7		6.1	1.9	
Delay (s)	43.5	20.1		39.1	39.6		39.0	22.3		25.9	22.4	
Level of Service	D	С		D	D		D	С		С	С	
Approach Delay (s)		27.6			39.5			25.2			23.0	
Approach LOS		С			D			С			С	
Intersection Summary												
HCM Average Control Dela	ау		29.3	Н	CM Level	of Servic	e		С			
HCM Volume to Capacity ra	atio		0.75									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			12.0			
Intersection Capacity Utiliza	ation		85.8%	IC	CU Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: 40th St. & Telegraph Ave.

6	/1	6	12	01	4
<u> </u>	/ 1	U	~	•	

	٦	-	\mathbf{F}	•	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	≜t ≽		5	≜ 16		5	≜ 15		5	4 14	
Volume (vph)	270	920	360	90	690	370	480	1290	80	170	900	260
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.5		4.0	4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.94		1.00	0.94		1.00	0.99		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.95		1.00	0.99		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3173		1770	3147		1770	3478		1770	3363	
Flt Permitted	0.17	1.00		0.18	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	323	3173		334	3147		1770	3478		1770	3363	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	270	920	360	90	690	370	480	1290	80	170	900	260
RTOR Reduction (vph)	0	50	0	0	87	0	0	6	0	0	34	0
Lane Group Flow (vph)	270	1230	0	90	973	0	480	1364	0	170	1126	0
Confl. Peds. (#/hr)	140		183	183		140			129			59
Turn Type	pm+pt			pm+pt			Prot			Prot		
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	27.1	23.1		25.5	22.3		13.5	30.7		5.5	22.7	
Effective Green, g (s)	27.1	23.1		25.5	22.3		13.5	30.7		5.5	22.7	
Actuated g/C Ratio	0.34	0.29		0.32	0.28		0.17	0.38		0.07	0.28	
Clearance Time (s)	4.0	4.5		4.0	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	2.0		3.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	182	916		164	877		299	1335		122	954	
v/s Ratio Prot	c0.07	0.39		0.02	0.31		c0.27	0.39		0.10	c0.33	
v/s Ratio Perm	c0.43			0.15								
v/c Ratio	1.48	1.34		0.55	1.11		1.61	1.02		1.39	1.18	
Uniform Delay, d1	26.8	28.4		21.8	28.9		33.2	24.6		37.2	28.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	244.6	161.4		3.7	64.9		287.5	30.4		219.2	92.2	
Delay (s)	271.4	189.8		25.5	93.8		320.8	55.0		256.5	120.8	
Level of Service	F	F		С	F		F	E		F	F	
Approach Delay (s)		204.0			88.4			124.0			138.2	
Approach LOS		F			F			F			F	
Intersection Summary												
HCM Average Control Delay	1		141.3	H	CM Level	of Servic	е		F			
HCM Volume to Capacity rate	tio		1.32									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			13.0			
Intersection Capacity Utilizat	tion		123.6%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 2: W MacArthur Blvd. & Telegraph Ave.

6/16/2014

	≯	-	\mathbf{F}	4	+	*	•	t	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ፈቶኈ			ፈቶኬ		5	≜ 16		5	4 16	
Volume (vph)	200	740	350	200	820	340	320	1200	80	290	810	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.91			0.91		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.97			0.97		1.00	1.00		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		0.99	1.00	
Frt		0.96			0.96		1.00	0.99		1.00	0.97	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		4698			4723		1752	3491		1760	3387	
Flt Permitted		0.65			0.65		0.17	1.00		0.10	1.00	
Satd. Flow (perm)		3084			3086		316	3491		190	3387	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	200	740	350	200	820	340	320	1200	80	290	810	200
RTOR Reduction (vph)	0	43	0	0	2	0	0	3	0	0	15	0
Lane Group Flow (vph)	0	1247	0	0	1358	0	320	1277	0	290	995	0
Confl. Peds. (#/hr)	83		81	81		83	56		57	57		56
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		38.3			38.3		39.0	39.0		39.0	39.0	
Effective Green, g (s)		38.3			38.3		39.0	39.0		39.0	39.0	
Actuated g/C Ratio		0.44			0.44		0.44	0.44		0.44	0.44	
Clearance Time (s)		5.5			5.5		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0			2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		1345			1346		140	1551		84	1504	
v/s Ratio Prot								0.37			0.29	
v/s Ratio Perm		0.40			c0.44		1.01			c1.53		
v/c Ratio		1.45dl			1.80dl		2.29	0.82		3.45	0.66	
Uniform Delay, d1		23.4			24.8		24.4	21.4		24.4	19.2	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		10.9			26.7		600.6	3.5		1133.0	0.9	
Delay (s)		34.3			51.4		625.0	24.9		1157.4	20.1	
Level of Service		С			D		F	С		F	С	
Approach Delay (s)		34.3			51.4			144.9			273.8	
Approach LOS		С			D			F			F	
Intersection Summary												
HCM Average Control Delay			126.5	F	ICM Level	of Servic	e		F			
HCM Volume to Capacity ratio			2.23									
Actuated Cycle Length (s)			87.8	S	Sum of lost	t time (s)			10.5			
Intersection Capacity Utilization	ı		126.1%	10	CU Level o	of Service			Н			
Analysis Period (min)			15									
dl Defacto Left Lane. Recode	e with 1	though la	ne as a l	eft lane.								
c Critical Lane Group		Ť										

HCM Signalized Intersection Capacity Analysis 3: 27th St. & Telegraph Ave.

6/16/2014

	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ 1≽		5	≜ 1≽		5	4 16		ሻ	≜t ≽	
Volume (vph)	200	640	160	90	690	400	230	800	170	440	860	400
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.94		1.00	0.97		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3395		1770	3300		1767	3423		1767	3334	
Flt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.19	1.00	
Satd. Flow (perm)	1770	3395		1770	3300		186	3423		360	3334	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	200	640	160	90	690	400	230	800	170	440	860	400
RTOR Reduction (vph)	0	25	0	0	85	0	0	22	0	0	66	0
Lane Group Flow (vph)	200	775	0	90	1005	0	230	948	0	440	1194	0
Confl. Peds. (#/hr)			30			18	14		9	9		14
Confl. Bikes (#/hr)			14			5			38			20
Turn Type	Prot			Prot			Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	9.5	25.9		7.0	23.4		38.6	38.6		38.6	38.6	
Effective Green, g (s)	10.0	25.4		7.5	22.9		40.1	40.1		40.1	40.1	
Actuated g/C Ratio	0.12	0.30		0.09	0.27		0.47	0.47		0.47	0.47	
Clearance Time (s)	4.5	3.5		4.5	3.5		5.5	5.5		5.5	5.5	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	208	1015		156	889		88	1615		170	1573	
v/s Ratio Prot	c0.11	0.23		0.05	c0.30			0.28			0.36	
v/s Ratio Perm							c1.24			1.22		
v/c Ratio	0.96	0.76		0.58	1.13		2.61	0.59		2.59	0.76	
Uniform Delay, d1	37.3	27.1		37.2	31.1		22.4	16.4		22.4	18.5	
Progression Factor	1.00	1.00		0.89	1.28		0.98	0.90		0.86	0.89	
Incremental Delay, d2	50.9	3.1		0.3	60.4		748.9	1.1		730.4	3.3	
Delay (s)	88.2	30.2		33.3	100.2		770.8	15.8		749.8	19.8	
Level of Service	F	С		С	F		F	В		F	В	
Approach Delay (s)		41.8			95.1			160.6			208.7	
Approach LOS		D			F			F			F	
Intersection Summary												
HCM Average Control Dela	у		138.1	Н	CM Level	of Servic	е		F			
HCM Volume to Capacity ra	atio		1.91									
Actuated Cycle Length (s)			85.0	S	um of lost	time (s)			12.0			
Intersection Capacity Utiliza	ation		109.0%	IC	CU Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

350 FRANK OGAWA PLAZA 5TH FLOOR OAKLAND, CA 94612 510.251.8210 WWW.UP-PARTNERS.COM

MEMORANDUM

DATE: MARCH 29, 2011 To: Catherine Payne Planner III CEDA Planning and Zoning Division

FROM: Lynette Dias, AICP Principal

RE: CEQA Compliance for MacArthur BART Transit Village Stage¹ 2 FDP

In accordance with the Conditions of Approval for the MacArthur Bart Transit Village Preliminary Planned Unit Development and the terms of the Development Agreement, the City is in receipt of an application for a Final Development Permit for Stage Two (Stage Two FDP) proposed on Parcel D of the MacArthur Transit Village project site. The key purpose of this review is to determine whether the environmental effects of the Stage Two FDP are adequately analyzed in the 2008 Certified Environmental Impact Report (EIR) prepared for the project. As described below, this approval was considered in the EIR and as proposed would not result in new or more severe environmental impacts beyond those identified in the EIR. As a result, the City does not need to prepare a Subsequent or Supplemental EIR to satisfy the environmental review requirements of CEQA. This EIR remains adequate for the proposed Stage Two FDP.

The discussion below summarizes the following items: (1) overview of project approvals and environmental review; (2) relationship of the proposed Stage Two FDP with the approved Preliminary PUD/PDP and the project analyzed in the EIR; and (3) findings that the Stage Two FDP falls within the scope of the EIR and does not trigger the conditions described in CEQA Guidelines Section 15162 and Section 15163 calling for preparation of subsequent or supplemental environmental review.

Project Approvals and Environmental Review

The City has taken several actions to review and plan for the future development of the MacArthur BART Transit Village. These include, without limitation: (1) certified an EIR, (SCH No.

¹ The EIR and other project related materials also refers to the application as the "Phase 2" applications. "Stage" and "Phase" have the same meaning in reference to the MTV Project phasing.
To:Catherine PayneDATE:March 29, 2011PAGE:2

2006022075) on July 1, 2008; (2) approved Ordinance No. 12883 C.M.S. amending Section 17.97.170 of the Oakland Planning Code related to the minimum usable open space requirements in the S-15 zone and rezoning the Project Site to S-15 Transit-Oriented Development Zone on July 1, 2008; (3) adopted and approved a Preliminary Planned Unit Development (Preliminary PUD/PDP) permit on July 1, 2008 to allow development of 624 to 675 residential units, 42,500 square feet of neighborhood-serving retail and commercial uses (including 7,000 square feet of live/work units), a 5,000 square feet community center use, and parking garage for BART patrons ; (4) adopted and approved a major conditional use permit to exceed parking requirements and to allow off-street parking for non-residential uses on July 1, 2008; (5) approved preliminary design review for the Preliminary PUD/PDP on July 1, 2008; and (6) approved Ordinance No. 12959 C.M.S on July 21, 2009 enacting a Development Agreement. The Planning Commission has also reviewed the Stage One FDP and Vesting Tentative Tract Map (VTTM) on November 3, 2010 and March 16, 2011 and recommended approval to the City Council. The City Council will consider approval of the Stage One FDP and VTTM on April 5, 2011.

The Development Agreement and PUD, which were both considered in the EiR, anticipate that the City will timely consider additional future approvals, including, without limitation, Final PUD (FDP) permits for each of the Project Stages, a vesting tentative map, final design review, tree removal, and conditional use permits.

The phasing plan included in the Development Agreement provided for five separate development phases each having its own schedule for submission of a final development plan (FDP) and target approval date: (1) Phase 1 consisting of the new BART garage on block E, site remediation, BART plaza improvements, internal Drive, Frontage Road improvements, and a portion of Village Drive; (2) Phase 2 consisting of the affordable rental development on block D; (3) Phase 3 consisting of the mixed-use market rate development on block A; (4) Phase 4 consisting of the mixed-use market rate development on block B; and (5) Phase 5 consisting of the mixed use market rate development on block C, which includes the Surgery Center parcel.

The Stage Two FDP project plans, dated March 16, 2011, were submitted by the project applicant in accordance with the MTV project approvals and the Development Agreement phasing provisions. The Stage Two FDP includes 90 affordable rental residential units, 90 parking spaces, and usable open space. City staff reviewed the Stage Two plans and found the proposal to be in substantial conformance with the approved PUD and its Conditions of Approval and the terms of the Development Agreement.

Urban Planning Partners reviewed the Stage Two plans and found that there are no substantial project changes, no substantial changes in the project circumstances, and no new information of substantial importance, which could not have been known with the exercise of reasonable diligence when the EiR was certified, that would require major revisions of the certified 2008 EiR, because of a new significant effect or an increase in the severity of a previously identified

To: Catherine Payne DATE: March 29, 2011 PAGE: 3

significant effect. Under CEQA section 21166 and CEQA Guidelines sections 15162 and 15163, no further environmental review is required.

A summary of the relationship of these approvals relative to the Preliminary PUD/PDP approval and the certified EIR is provided below.

Relationship to approved Preliminary PUD/PDP

City staff evaluated the proposed Stage Two FDP and found that in all fundamental respects the Stage Two FDP is in substantial compliance with the project approved in the PUD. The April 2, 2011 Planning Commission Staff Report finds that there are no new or changed uses; no new facilities; no change in the overall residential unit count; no change in the amount of retail/commercial space; no change in community space; no change in the height or bulk controls; no change in the community benefits; and no change In project staging. The changes in the location of Parcel D are a result of minor changes to the garage (e.g., parcel adjustment, realignment of internal Street) required to implement the terms of the Draft Traffic Demand Management Plan (TDMP) included in the Preliminary PUD/PDP approval. Additionally, none of the changes would violate the Development Agreement. The April 2, 2011 Staff Report also concludes that the facts described in the report support a finding by the City that the Stage Two FDP, Including the refinements summarized above and described in the Staff Report, substantially conforms to the Preliminary PUD/PDP.

Relationship to EIR

The Stage Two FDP is within the scope of the project evaluated in the EIR and would not trigger any new significant impacts or a substantial increase in the severity of previously Identified impacts. The MacArthur Transit Village project analyzed In the certified EIR consisted of a new BART parking garage; improvements to the BART Plaza; up to 675 residential units (both marketrate and affordable); up to 44,000 square feet of commercial space (including live/work units); 5,000 square feet of community center or childcare space; approximately 1,000 structured parking spaces, including the 300 space BART parking garage (which was increased to 480 spaces pursuant to the Conditions of Approval); approximately 30-45 on-street parking spaces, pedestrian and bicycle friendly internal streets and walkways; improvements to the Frontage Road; a new internal street, Village Drive, located between Frontage Road and Telegraph Avenue; two new traffic signals at the Intersections of Village Drive/Telegraph Avenue and West MacArthur Boulevard/Frontage Road; a rezoning of the Project site to S-15, and a text amendment to the S-15 zone. Multiple FDPs were contemplated in the EIR (See Draft EIR, pages 72-74) to Implement the Preliminary PUD/PDP.

For Building D, the project considered in the EIR included a 5-story building located immediately north of the parking structure and west of Internal Street. The building was 124,300 square feet and would accommodate 90 affordable units and include a below-grade podium parking structure. The Stage Two FDP building is also 5 stories with a below-grade parking structure. It is

To: Catherine Payne DATE: March 29, 2011 PAGE: 4

a 134,868 square feet which Is approximately 10,000 square feet larger than the building considered In the 2008 EIR. This slight increase In the building size would not result in any new or substantially greater impacts than what was considered In the 2008 EIR particularly as the there is no Increase in the number of units and the overall development will be limited to a maximum of 675 residential units.

The conceptual plan included In the 2008 EIR showed Building D west of Internal Street. The shift in the location of Building D is necessary to accommodate refinements to the parking structure that were necessary to implement TDMP. The proposed shift would not change any of the 2008 EIR findings as development of a very similar density and scale has always been contemplated on this portion of the MTV project site. Figure III-3, Conceptual site Plan, in the 2008 EIR shows the subject portion of the site (Parcel D), being developed with Building C which included a 6-story building with a below-grade podium parking structure. The Stage Two proposal would result in less Intense development on this portion of the site, as the proposed structure is only 5 stories. The 2008 EIR also specifically recognized and considered that the phasing was conceptual and that parcels may be developed out of sequence.

The MTV Project conditions of approval and mitigation measures detailed in the 2008 EIR and the adopted Mitigation Monitoring and Reporting Program will adequately address significant impacts identified for the MTV project In the 2008 EIR. No new significant impacts or a substantial increase in the severity of previously Identified impacts would occur with the development of Building D as the proposal substantially conforms to the project considered and analyzed in the 2008 EIR. Consequently, there are no substantial project changes, no substantial changes in the project circumstances, and no new information of substantial importance that would require major revisions of the certified 2008 EIR, because of a new significant effect or an Increase in the severity of a previously identified significant effect. Under CEQA section 21166 and CEQA Guidelines sections 15152 and 15163, no further environmental review Is required. Thus, in considering approval of the Stage Two FDP, the City should rely on the previously certified 2008 EIR.

During the City's review of the Stage One FDP and VTTM, Holland & Knight, who represent Alta Bates Summit Medical Center Surgery Property Company LLC(the Surgery Center) submitted three letters to the City expressing concerns about the adequacy of CEQA review.

The Surgery Center Is located at 3875 Telegraph Avenue on a parcel that is in Stage Five of the MTV Project. Although the letters were specific to the previously approved Stage One FDP and TTM8047, It is anticipated that similar issues may be raised for Stage Two FDP. The Surgery Center letters mistakenly state that the MTV Project has been changed to exclude the Surgery Center parcel; based on this change: (1) construction of the MTV Project will have significant noise, vibration, and air quality impacts on the operations, services, and patient care at the Surgery Center; and (2) the City should defer its approval of the MTV Project until these impacts

To: Catherine Payne DATE: March 29, 2011 PAGE: 5

on the Surgery Center are studied in a subsequent EIR. The Surgery Center letters do not raise any issues or contain any new information requiring the City to prepare a supplemental or subsequent EIR for the MTV Project for the reasons summarized in the staff report and detailed in the Memorandum from Urban Planning Partners to Eric Angstadt and Catherine Payne, dated March 18, 2011, regarding Response to Letters Received Regarding the MacArthur Transit Village Stage One Final Development Plan Permit and Vesting Tentative Track Map 8047. (Attached as Exhibit A)

Conclusion

As discussed above, the development proposed in the Stage Two FDP application was considered in the EIR as it is in conformance with the approved PUD. The refinements incorporated into the application represent no change in development Intensity or significant physical changes on the MacArthur Transit Village site from the project analyzed in the EIR. Therefore, these changes would not result In new or more severe impacts (or require new or significantly altered mitigation measures) beyond those already identified in the EIR. The EIR is adequate and no subsequent or supplemental environmental review.

The following discussion summarizes the reasons why no supplemental or subsequent CEQA review is necessary pursuant to CEQA *Guidelines* Section 15162 and the City can rely on the previously certified EIR.

<u>Substantial Changes to the Project</u>. The refinements to the project are minor and necessary to accommodate the reconfiguration of the garage and the shift of Internal Street which were considered as part of the Stage One FDP and VTTM and such refinements were necessary to implement the Conditions of Approval of the Preliminary PUD/PDP as discussed in the Preliminary PUD/PDP and Phase 1 and VTTM Substantial Conformance Memo, dated October 26, 2010. The shift In the location of Building D and other minor refinements would <u>not</u> result in new significant environmental impacts or a substantial increase In the severity of impacts already Identified in the 2008 EIR. Therefore, the proposed changes to the project are considered minor refinements, not substantial changes.

<u>Project Circumstances</u>. Since certification of the EIR, conditions In and around the MacArthur Transit Village have not changed and thus Implementation of the project (including the proposed refinements) would <u>not</u> result in new significant environmental effects or a substantial increase In the severity of environmental effects already identified in the 2008 EIR. No substantial changes in noise levels, air quality, traffic, or other conditions have occurred within and around the project site since certification of the EIR.

<u>New Information</u>. No new information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the 2008 EIR

٦

r

To:Catherine PayneDATE:March 29, 2011PAGE:6

was certified, has been identified which is expected to result in: 1) new significant environmental effects or a substantial increase in the severity of environmental effects already Identified in the EIR; or 2) mitigation measures or alternatives which were previously determined not to be feasible would in fact be feasible, or which are considerably different from those recommended in the 2008 EIR, and which would substantially reduce significant effects of the project, but the project applicant declines to adopt them.

As described previously, changes to the proposed project would not result in significant environmental effects (including effects that would be substantially more severe than impacts identified In the 2008 EIR). Existing regulations (Including City General Plan policies and ordinances In the Municipal Code) and mitigation measures included in the 2008 EIR would be adequate to reduce the impacts resulting from implementation of changes to the proposed project to less-than-significant levels.

<u>Attachment</u>

Exhibit A: Response to Letters Received Regarding the MacArthur Transit Village Stage One Final Development Plan Permit and Vesting Tentative Track Map 8047.

URBAN PLANNING PARTNERS INC.

350 FRANK OGAWA PLAZA 5TH FLOOR OAKLAND, CA 94612 510.251.8210 WWW.UP-PARTNERS.COM

MEMORANDUM

DATE: MARCH 18, 2011

To: Eric Angstadt and Catherine Payne CEDA, City of Oakland 250 Frank H. Ogawa Plaza, Suite 3315 Oakland, CA 94612-2032

FROM: Lynette Dias, AICP

RE: Response to Letters Received Regarding the MacArthur Transit Village Stage One Final Development Plan Permit and Vesting Tentative Track Map 8047.

A. EXECUTIVE SUMMARY AND OVERVIEW

1. The Surgery Center Letters

The City has received two letters (dated December 17 and December 21, 2010) from Holland & Knight, who represent Alta Bates Summit Medical Center Surgery Property Company LLC, The Surgery Center at Alta Bates Summit Medical Center, including Alta Bates Summit Medical Center, a Sutter Health affiliate (the Surgery Center). The Surgery Center is located at 3875 Telegraph Avenue on a parcel that is in Phase 5 of the MacArthur Transit Village Project (MTV Project). (See, MTV Project Site Location and Illustrative Plans, Exhibit A.) The Surgery Center letters mistakenly state that: the MTV Project has been changed to exclude the Surgery Center parcel; based on this change: (1) construction of the MTV Project will have significant noise, vibration, and air quality impacts on the operations, services, and patient care at the Surgery Center; and (2) the City Council should defer its approval of the MTV Project's Phase 1 Final Development Permit (FDP), Vesting Tentative Track Map (VTTM), and other entitlements until these impacts on the Surgery Center are studied in a subsequent EIR.

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 2

2. Summary Conclusion: No Additional Environmental Review Is Required

The Surgery Center letters do not raise any issues or contain any new information requiring the City to prepare a supplemental or subsequent EIR for the MTV Project Phase 1 FDP and VTTM for the following reasons:

- No Project Changes: The MTV Project has not been changed or modified to exclude the Surgery Center parcel. The MTV Project analyzed in the 2008 EIR and approved by the City is a phased development. The mixed-use building proposed for the Surgery Center parcel has always been in Phase 5, the final phase of development, for which a final development permit application is not required to be submitted until 2019. Thus, the Surgery Center parcel has not been expected or required to be included in the Phase 1 FDP application or approval. The VTTM covers those portions of the MTV Project site controlled by the project sponsor. Although the Surgery Center parcel and one other MTV Project parcel (3901 Telegraph Avenue) are not included in the VTTM, the development of these parcels are in later Project phases and, if subdivision maps are required for the development of these parcels, the necessary subdivision maps will be submitted with (or before) the FDP applications for these later phases are filed. Additionally, future development of the Surgery Center parcel could occur within its existing boundaries and no additional subdivision map may be necessary. Consequently, neither the Phase 1 FDP nor the VTTM change the MTV Project to exclude the Surgery Center and thus no project change has occurred that would require additional environmental review under CEQA.
- No New Information: The EIR, which analyzed a phased buildout of the MTV Project, including the noise, vibration, and air quality impacts associated with construction activities, contemplated that the Surgery Center, which would not be removed until in the final phase of development, could be operating during and subsequent to construction of the initial MTV Project phases. The Surgery Center's construction concerns could have been raised in 2008 and 2009 during the public review of the MTV Project EIR and the City's consideration of the initial Project approvals. Thus, these concerns do not constitute new information that could not have been known when the EIR was certified. Consequently, the Surgery Center has not provided new information that would require additional environmental review under CEQA.
- Project Conditions/Mitigations Sufficient: The MTV Project conditions of approval and mitigation measures address construction related air, noise, and vibration impacts on the surrounding area, including the Surgery Center parcel. The City's Standard Conditions of Approval (SCA) for dust control (COA-AIR 1) and construction emissions

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 3

(COA-AIR 2) will reduce the potential air quality impacts on uses adjacent to the construction site (see Exhibit B, Referenced Conditions of Approval). Additionally, in response to the Surgery Center's air quality health risk concerns, LSA Associates prepared a health risk assessment to evaluate the construction related dust and emissions on the Surgery Center (see Exhibit C, Health Risk Assessment). The health risk assessment determined that the potential dust and diesel emissions impacts on the Surgery Center would be below the thresholds of significance. A site specific construction noise plan has been prepared pursuant to COA-NOISE 5 (see Exhibit D, Noise Reduction Plan). The analysis conducted for this plan confirms the EIR's conclusion that, with implementation of the City's SCAs and the noise control strategies provided for in the plan, construction noise impacts on the Surgery Center will be less than significant. In accordance with COA-NOISE-6, Wilson Ihrig and Associates, a vibration expert has evaluated the construction plan for areas near the Surgery Center and has confirmed that the vibration impacts will be less than significant based on the use of certain construction techniques and timing restrictions (see Exhibit E, Vibration Memorandum).

Consequently, there are no substantial project changes, no substantial changes in the project circumstances, and no new information of substantial importance, which could not have been known with the exercise of reasonable diligence when the EIR was certified, that would require major revisions of the 2008 EIR, because of a new significant effect or an increase in the severity of a previously identified significant effect. Under CEQA section 21166¹ and CEQA Guidelines section 15162², no further environmental review is required. Thus, in considering approval of the Phase 1 FDP and VTTM, the City should rely on the previously certified 2008 EIR.

¹ CEQA section 21166 provides that when an environmental impact report has been prepared for a project, no subsequent or supplemental environmental impact report shall be required by the lead agency unless one or more of the following events occurs: (a) substantial changes are proposed in the project which will require major revisions of the EIR; (b) substantial changes occur with respect to the circumstances under which the project is being undertaken which will require major revisions of the EIR; (c) new information, which was not known and could not have been known at the time the EIR was certified as complete, becomes available.

² CEQA Guideline section 15162 provides that the only substantial changes in a project or the project circumstances that would result in new or more severe significant environmental impacts triggers preparation of a subsequent or supplemental EIR. Additionally, new information only triggers preparation of a subsequent or supplement EIR if it could not have been known with the exercise of reasonable diligence when the original EIR was certified and would result in new or more severe significant effects or new information about mitigation measures or alternatives that are rejected.

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 4

3. MacArthur Transit Village Project Approvals and Current Applications

In July of 2008, the City Council approved the MTV Project. The MTV Project is the phased buildout of a new mixed-use transit village development located at the existing MacArthur BART station. The MTV Project consists of up to 675 residential units (market-rate and affordable), 42,500 square feet of retail and commercial uses, a 5,000 square foot community center use, a 480 space BART parking garage, and a number of infrastructure improvements. The MTV Project site includes the existing BART surface parking lots and several private lots on West MacArthur Boulevard and Telegraph Avenue, including 3875 Telegraph Avenue, which is the location of the Surgery Center. The City prepared and certified an EIR (the 2008 EIR) that evaluated the potential impacts of the phased buildout of the MTV Project. The 2008 MTV Project approvals include a rezoning of the MTV Project site; a planned unit development permit (PUD), which includes a preliminary development plan (PDP); design review; a major conditional use permit; and the associated conditions of approval that include, design guidelines, a draft traffic demand management program, and a mitigation monitoring and reporting program (collectively, "the MTV Project approvals").

In July of 2009, the City Council approved a Development Agreement for the MTV Project, which included a phasing plan generally consistent with the 2008 approvals (see Exhibit F, Development Agreement, Section 3.3.3). The phasing plan provided for five separate development phases each having its own schedule for submission of a final development plan (FDP) and target approval date: (1) Phase 1 consisting of the new BART garage on block E, site remediation, BART plaza improvements, Internal Drive, Frontage Road improvements, and a portion of Village Drive; (2) Phase 2 consisting of the affordable rental development on block D; (3) Phase 3 consisting of the mixed-use market rate development on block B; and (5) Phase 5 consisting of the mixed-use market rate development on block B; and (5) Phase 5 consisting of the mixed use market rate development on block C, which includes the Surgery Center parcel. The FDP and other necessary applications for Phase 5 may be submitted up to ten years from July 7, 2009 (i.e., July 2019), the date of the Owner Participation Agreement approval, per Development Agreement, Section 3.3.3.

In accordance with the MTV Project approvals and the Development Agreement phasing provisions, the Phase/Stage 1³ FDP includes the new BART parking garage and the project site infrastructure improvements required to be included in Phase 1. The project sponsor also has submitted a VTTM for those parcels in the MTV Project site controlled by the project sponsor.

³ The City also refers to the application as the "Stage 1" applications. "Stage" and "Phase" have the same meaning in reference to the MTV Project phasing.

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 5

The MTV Project parcels not included in the VTTM, the Surgery Center parcel and the 3901 Telegraph Avenue parcel, will be included in future phases and if any subdivision maps are required in connection with development on these parcels, the appropriate maps will be filed with the final development permit applications as required by Condition of Approval No. 26 (see Exhibit B, Referenced Conditions of Approval). The project sponsor has filed the FDP application for the Phase/Stage 2 development on parcel D and that application is under review by the City staff.

B. RESPONSES TO COMMENTS

The following analysis provides responses to each comment raised in the Surgery Center's December 21, 2010 letter.⁴ The responses are keyed to each comment included in the Surgery Center letter (see Exhibit G, letter with enumerated comments).

Comment 1 – MTV Project

The Surgery Center asserts that the MTV Project has been changed to delete the Surgery Center site. Additionally, the Surgery Center asserts that the Staff Report contains inconsistent project descriptions.

Response 1. The MTV Project has not changed to exclude the Surgery Center parcel. The MTV Project has always been proposed, analyzed in the 2008 EIR, and approved as a phased project. The Phase/Stage 1 FDP under consideration by the City Council simply represents the first phase of the MTV Project. The 2008 EIR, the MTV PUD, and the MTV Development Agreement all describe a phased project and establish requirements related to the phased final applications. The Surgery Center parcel is located in block C of the MTV Project site (see Exhibit A). The development on block C is designated as Phase 5 and the final applications for block C are not expected to be pursued for several years. Consequently, there is no reason or requirement to include the development proposed for the Surgery Center parcel in the Phase/Stage 1 FDP application.

The MTV Project phasing description in the EIR and the phasing requirements in the Conditions of Approval and Development Agreement are summarized below.

⁴ All of the points raised in the Surgery Center December 17, 2010 letter are covered in greater detail in the December 20, 2010 letter.

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 6

2008 EIR

The 2008 EIR states the following:

The project would be constructed over approximately seven years (see Table III-3)⁵. The phasing program discussed below is conceptual in that phasing is expected to occur sequentially; however, some phases could occur concurrently, or phasing may occur out of sequence depending on market conditions. (p.68)

Table III-3 Phasing	Schedule
---------------------	----------

Phase	Schedule
BART Plaza Improvements	2009
Site Remediation and Demolition	2009
BART Parking Structure (Building E)	2009
Affordable Development (Building D)	2009
Building B	2010
Building A	2012
Building C [Surgery Center]	2014

Source: MTCP, 2007.

The 2008 EIR described the buildout of the MTV Project as occurring in five phases. (Draft EIR, p.70.) Phase I included the BART garage (block/building E), site remediation, and certain site infrastructure improvements. The Phase 1 FDP application is consistent with the Phase I description in the 2008 EIR. The phasing schedule included the development proposed for the Surgery Center parcel (block/building C) in the final phase. Thus, the 2008 EIR did not anticipate that the Surgery Center parcel development would be included in the Phase/Stage 1 FDP. The Phase 1 FDP is consistent with the 2008 EIR MTV Project and phasing description.

⁵ This buildout estimate was later extended to ten years in the Development Agreement.

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 7

Conditions of Approval for the MTV Project

The City Council adopted final Conditions of Approval in connection with its July 1, 2008 approval of the MTV Project. Condition No. 2 (Effective Date, Expiration, Extensions and Extinguishment) addresses phasing/staging of the MTV Project (see Exhibit B, Referenced Conditions of Approval). This condition states that the submittal of "Final Development Plans (FDPs) shall be permitted in five (5) stages over a 10 year time period." The description of the Phase/Stage 1 FDP includes the new BART parking garage, site remediation, Internal Drive, the Frontage Road improvements, and a portion of Village Drive. (Condition 2.(a)(i).) The Phase/Stage 1 FDP meets the requirements of this condition.

Under Condition of Approval No. 2, the development approved for block C, which includes the Surgery Center parcel, is designated Phase/Stage 5. The FDP for Phase/Stage 5 is required to be submitted to the Planning Department for review and processing within 10 years from the date of the PUD approval. (Condition No. 2.(a)(v).) Thus, the development on the Surgery Center parcel is not required to be a part of the Phase/Stage 1 FDP. Condition No. 2 confirms that: (a) the MTV Project was approved as a phased development; (b) the MTV Project approvals do not require development of the Surgery Center parcel to be included in the Phase/Stage 1 FDP; and (c) development on, and the submittal of the FDP for, the Surgery Center parcel is not expected or required for a number of years.

Although Condition of Approval No. 2 allows the project sponsor discretion to substitute different blocks/buildings in the Phase/Stage 3, 4, and 5 applications, the Phase/Stage 1 and 2 applications must be processed in accordance with the terms of the condition. (Condition No. 2(c).) This provision reflects the City's policy determination regarding the importance of proceeding with the Phase/Stage 1 and 2 improvements early in the development phasing. Additionally, Condition No. 2 provides that the phasing timeframes prescribed in the Development Agreement would supersede this condition. (Condition No. 2(e).) The Development Agreement phasing provisions are discussed below.

Condition of Approval No. 26 (Subdivision Maps) states that the FDP for each development phase must be accompanied by the required subdivision map necessary to subdivide the property (see, Exhibit B, Referenced Conditions of Approval). The VTTM under consideration by the City Council covers all of the MTV Project parcels that are under the project sponsor's control. At the time the FDP for the Surgery Center parcel is pursued, a determination will be made as to whether a subdivision map is required. Development on the Surgery Center parcel, however, may not require a new subdivision map or an amendment of the VTTM. The project sponsor's current MTV Project site plan shows that the existing Surgery Center parcel

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 8

configuration would accommodate the planned development (see Exhibit A, MTV Project Illustrative Plans).

Development Agreement

Section 3.3.3 of the Development Agreement adopted by the City Council details the requirements for the MTV Project phasing (see, Exhibit A, MTV Project Illustrative Plans). Consistent with the 2008 EIR and the Conditions of Approval, Section 3.3.3 provides for a five-phase development plan. Pursuant to Section 3.3.3, the Phase/Stage 1 FDP includes the BART parking garage, site remediation, BART plaza improvements, Internal Drive, the Frontage Road improvements and a portion of Village Drive. In compliance with the Development Agreement, the project sponsor timely submitted the FDP for Phase/Stage 1 together with the necessary VTTM. The FDP applications for the remaining four project phases are required to be submitted over approximately ten years. The Phase/Stage 1 FDP and the VTTM are consistent with the phasing requirements of the Development Agreement. The submittal of the FDP application for, and development of, the Surgery Center parcel are not required for many years.

Phase/Stage 1 FDP and VTTM

The Phase/Stage 1 FDP does not include the development planned for the Surgery Center parcel because it is not part of the Phase/Stage 1 development. It is neither necessary nor required by any of the MTV Project approvals for the development of Phase 1 to include the development on the Surgery Center parcel. The VTTM does not include the Surgery Center parcel because the project sponsor does not yet control the Surgery Center parcel. These circumstances are not project changes. As anticipated by the 2008 EIR, the MTV Project Conditions of Approval, and the Development Agreement, it is expected that the project sponsor will proceed with the FDPs for future phases and, if necessary, subdivision maps or VTTM amendments, in accordance with the Project phasing schedule and following any necessary acquisition of the parcels included in these future phases.

Consistent Project Description

The Surgery Center letter states that the City Staff Report contains an inconsistent Project description. This comment misinterprets the Staff Report. The Surgery Center's assessor parcel number is listed as part of the overall MTV Project site approved in the PUD (and other MTV Project approvals) and the parcel is shown as part of the MTV Project site on the zoning map included in the Staff Report. This information confirms that the Surgery Center parcel remains a part of the MTV Project, even though it is not included in the Phase/Stage 1 FDP and the VTTM.

The Surgery Center letter also characterizes one of the Project modifications as "not requiring

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 9

acquisition of 3875 Telegraph Avenue (the Surgery Center property)." Again, this comment misinterprets the Staff Report. The Staff Report lists the Phase/Stage 1 refinements that have occurred between the PUD/preliminary development plan approval and the FDP in the context of demonstrating that the FDP substantially conforms to the PUD/preliminary development plan. One of the changes listed is the minor shift in the location of a portion of Village Drive in order to align Village Drive with the existing 39th Street. The City Council Staff Report, dated December 14, 2010, states (p.5):

• Village Drive, has been shifted to line up with the 39th Street right-of-way and to allow the Stage One VTTM to move forward prior to the acquisition of the Surgery Center property.

Although it was originally anticipated that a portion of Village Drive would require use of a portion of the Surgery Center parking area, the original alignment of Village Drive did not require demolition of the Surgery Center building. Moreover, the realignment of Village Drive to avoid the Surgery Center parking area does not preclude acquisition of the Surgery Center parcel and its development in Phase/Stage 5 consistent with Project described in the 2008 EIR, the MTV Project approvals, and the Development Agreement. The Staff Report analysis confirms that the Phase/Stage 1 project refinements reflected in the FDP and VTTM are in substantial conformance with the PUD/preliminary development plan and do not constitute substantial changes or substantial new information that would require revisions to the 2008 EIR. Shifting Village Drive allows acquisition of the Surgery Center parcel after the Phase/Stage 1 approvals; it does not remove Phase/Stage 5 and the development of the Surgery Center parcel from the MTV Project. As shown in the discussion above, Phase/Stage 5 is not anticipated to be developed for quite a few years and there is no reason or obligation to include the development of Phase/Stage 5 or the Surgery Center parcel in the Phase/Stage 1 final approvals.

In summary, the MTV Project has not been changed to exclude the development of the Surgery Center parcel. The development of this parcel is just not part of the Phase/Stage 1 FDP or the VTTM.

Comment 2 – Analysis of Impacts on the Surgery Center

The comment states that, because the project has been changed to exclude the Surgery Center, the EIR did not evaluate project's impacts on the continued operation of the Surgery Center.

Response 2. The 2008 EIR described the MTV Project as a phased development and described the proposed five development phases. (See, Response 1.). The 2008 EIR assumed demolition of the Surgery Center at the time the Surgery Center parcel would be developed, which was

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 10

projected to occur in the final, fifth phase of the MTV Project. The illustrative phasing schedule included in the 2008 EIR showed development of the Surgery Center property in 2014. The 2008 EIR fully considered the construction and operational environmental impacts of the MTV Project on the surrounding area, which, during the first phases of buildout, would include the Surgery Center parcel.

The MTV Project phasing has remained consistent: this is a five phase project and the development on the Surgery Center is part of Phase/Stage 5, which is not expected or required to be initiated for a number of years. No provision in any of the MTV Project approvals requires the Phase/Stage 1 FDP or the initial VTTM to include the Phase/Stage 5 development proposed for the Surgery Center parcel. Abiding by the approved phasing plan does not mean that the Surgery Center parcel has been excluded from the MTV Project. The facts do not support the Surgery Center's assertion that the project has changed. Consequently, there is no substantial project change that would trigger the potential for new environmental review.

Additionally, the concerns now raised by the Surgery Center about its ongoing operations is not new information of substantial importance that could not have been known at the time the 2008 EIR was certified. The 2008 EIR plainly analyzed a phased project with development on the Surgery Center parcel in the final phase. The construction and operational impacts of the MTV Project on surrounding uses were fully assessed in the 2008 EIR. Additionally, the EIR included an alternative (Alternative 3, "Mitigated Reduced Building/Site Alternative") that examined the construction and operational impacts of a project without the Surgery Center site. Thus, the Surgery Center was aware that the first phases of the MTV Project or the implementation of Alternative 3 would involve construction activities adjacent to its site. All of the concerns raised in the Surgery Center letter were known and could have been raised in 2008. The Surgery Center could have, but did not, raise its concerns at the time the City certified the 2008 EIR. The Surgery Center's December 2010 comments on the 2008 EIR do not meet the CEQA definition of new information of substantial importance that was not known, or could not have been known with the exercise of due diligence, at the time the EIR was certified. (*CEQA Guidelines* section 15162.)

In light of these facts, the 2008 EIR remains valid and no longer subject to challenge. The City filed the following Notices of Determination for the MTV Project: (1) July 16, 2008 – NOD for the MTV Project approvals; (2) July 10, 2009 – NOD for the Owner Participation Agreement; (3) July 23, 2009 – NOD for Development Agreement. No legal challenge to the 2008 EIR was filed. The time to do so has long expired.

Moreover, as part of the City staff review of the Phase/Stage 1 FDP and the VTTM, the staff considered the differences between the approved PUD/preliminary development plan and the Phase/Stage 1 FDP and the VTTM to determine whether any additional environmental review

To: Eric Angstadt and Catherine Payne DATE: March 18, 2011 PAGE: 11

would be required pursuant to *CEQA and the CEQA Guidelines*. The staff found that no subsequent or supplemental environmental review was necessary, because the minor refinements to the site plan, some of which implemented Conditions of Approval, did not constitute substantial changes in the project, substantial changes to the project circumstances, or new information of substantial importance that would result in any new significant impacts or a substantial increase in the severity of impacts already identified in the 2008 EIR. See Approved November 3, 2010 Planning Commission Report (revised on 11/13/10).

Comment 3 – Notice to the Surgery Center

The comment states that the project sponsor has "unilaterally, and without prior notice" to the Surgery Center changed the project and additional environmental review should be required to consider noise, vibration, dust and diesel particulate matter.

Response 3. The MTV Project has not been changed to exclude the Surgery Center (see discussion above pp 1-10). The Surgery Center owners have known about the MTV Project for several years and were informed that the project sponsor was proceeding with the first phase of development. The project sponsor has provided documentation that since 2008 the project sponsor and the Surgery Center owners have met and corresponded a number of times to discuss the project sponsor's acquisition of the Surgery Center parcel (see Exhibit H, Summary of Negotiations with the Surgery Center).

With respect to the Phase/Stage 1 FDP and the VTTM, the documentation provided by the project sponsor shows that a representative of the Surgery Center attended the April 21, 2010 community presentation by the project sponsor at which the Phase/Stage 1 FDP and construction schedule were reviewed. On June 2, 2010, the project sponsor sent a letter to the Surgery Center to provide an update on the Phase/Stage 1 FDP and the anticipated dates for City hearings on the plan. This letter specifically described the realignment of Village Drive to allow Phase/Stage 1 to proceed without acquiring the right to use a portion of the Surgery Center parcel. The letter also reiterated that the Surgery Center parcel continued to be included as part of the MTV Project and is shown on block C-3 in the current MTV Project Illustrative Plan, which reflects the FDP plans for Phases 1 and 2 (see Exhibit A). Representatives of the project sponsor also met with the Surgery Center owners on December 1, 2010 to discuss the MTV Project status and the continued interest in the acquisition.

See responses to the Surgery Center Letter Attachments A and B below regarding noise, vibration, and dust and diesel particulate matter.

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 12

Comment 4 – Surgery Center Operations

This comment provides information regarding the Surgery Center's operations, services, and patient care, which it characterizes as "uniquely sensitive receptors."

Response 4. The 2008 EIR noise and air quality analyses considered the category of sensitive receptors, which includes residences and hospitals among other uses. To the extent that a surgery center also could be considered a sensitive receptor, it would be covered by the requirements in the City's standard conditions of approval and imposed on the MTV Project to reduce construction noise, vibration, and air quality impacts on these uses.⁶ See responses to the Surgery Center Letter Attachments A and B below regarding noise, vibration, and dust and diesel particulate matter.

Comment 5 – Surgery Center Parcel and the Phase/Stage 1 Applications

This comment states that the project sponsor has acknowledged that the Surgery Center has been removed from the Project and dismisses the Project's impacts on the Surgery Center.

Response 5. This comment misinterprets the information it quotes from the October 26, 2010 memorandum from Art May to Catherine Payne. First, as discussed above (Response 1), the MTV Project has not been changed to remove the Surgery Center parcel. In fact, the memorandum quoted in the Surgery Center letter states the project sponsor expects to include the Surgery Center parcel in an amended VTTM when the project sponsor gains control of the Surgery Center parcel. Nothing is this statement "acknowledges" or implies that the project sponsor has amended the MTV Project to delete Phase/Stage 5 and the development of the Surgery Center parcel. This memorandum merely acknowledges that the Surgery Center parcel is not necessary for the Phase/Stage 1 FDP and the initial VTTM. Second, the memorandum does not dismiss the MTV Project impacts on the Surgery Center. Instead, the quoted sentence from the memorandum means that the Phase/Stage 1 development will not require the use of any portion of the Surgery Center parcel and in this sense will not affect the Surgery Center. The main point of the quoted statement is that the construction of the Phase/Stage 1 development is not dependent on acquisition of the Surgery Center site.

⁶ The standard conditions of approval were formally adopted by the Oakland City Council in November 2008 to reduce potential impacts of projects, Ordinance No. 12899 C.M.S., November 3, 2008. However, the standard conditions of approval were used by the City prior to formal adoption and those related to noise were approved by the Council several years prior to the adoption of the standard conditions of approval.

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 13

Comment 6 – Construction Impacts

This comment states that because the Surgery Center has been removed from the MTV Project it will be affected by the construction impacts on its patients, employees, operations, and equipment from noise, vibration, dust and diesel particulate, and fumes.

Response 6. As discussed above, the Surgery Center has not been removed from the MTV Project and no additional CEQA analysis is warranted on this basis. (See, Responses 1 and 2 above.) The 2008 EIR covered the construction impacts of the MTV Project. The 2008 EIR analyzed the MTV Project as a phased project, with the Surgery Center site development in the final phase. Consequently, the construction impacts from the early development phases on sites included in later development phases were considered in the construction impact analysis. Additionally, the EIR included Alternative 3, a project without the Surgery Center site. This alternative included an evaluation of construction impacts.

To respond to the concerns raised by the Surgery Center, the project sponsor retained LSA Associates and Wilson Ihrig and Associates to (1) prepare a health risk assessment to evaluate the air quality (dust and diesel emission) concerns; (2) prepare the construction noise plan required by the COA-NOISE-5 and evaluate whether the measures included in this plan would ensure that the construction noise would meet City requirements; and (3) evaluate the vibration concerns and recommend any necessary vibration reduction strategies pursuant to COA-NOISE-6. These analyses confirm the EIR's determination that project construction activities undertaken pursuant to the City's Standard Conditions of Approval would not result in significant adverse air quality, noise, or vibration impacts. The LSA Associates and Wilson Ihrig and Associates analyses are discussed in detail below in Responses to the Attachment A and B of the December 21, Surgery Center letter.

In order to provide the City Council with additional information about the potential impacts of construction projects adjacent to medical facilities, we reviewed two EIRs recently certified by the City for new hospitals/medical centers, both of which involve construction activities adjacent to existing hospitals: the Alta Bates Summit Medical Center, Summit Campus Seismic Upgrade and Master Plan EIR (ABSMC EIR) and the Kaiser Permanente Oakland Medical Center Master Plan Project EIR (Kaiser EIR). These hospitals are significantly larger than the Surgery Center, provide more medical services and have more equipment than the Surgery Center, and, unlike the Surgery Center, operate 24 hours a day and accommodate short-term and long-term patient stays.

Construction Air Quality Comparison: Both the ABSMC EIR and the Kaiser EIR relied solely on the City's SCAs to mitigate potential construction air quality impacts. The air quality SCAs included in

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 14

the MTV 2008 EIR require more stringent mitigation of dust and equipment emissions than the SCAs included in the ABSMC EIR and the Kaiser Medical Center EIR.

Construction Noise Comparison: The less-than-significant noise finding in the MTV 2008 EIR is consistent with the findings included in the ABSMC EIR and the Kaiser EIR. Both of the ABSMC and Kaiser projects proposed the use of heavy construction equipment immediately adjacent to existing hospital uses. The Kaiser EIR considers the use of pile drivers and the ABSMC EIR considers the use of drilled piles, which would be installed (for both projects) immediately adjacent to those included in the ABSMC EIR and slightly <u>more</u> restrictive than those included in the Kaiser EIR, which Charles M. Salter Associates (noise consultant for Kaiser EIR) found to be adequate to reduce the construction noise impacts to a less-than-significant level. The Surgery Center has not identified any unique circumstances of the Surgery Center or the MTV Project would necessitate mitigation beyond what is required by the SCAs and was found to adequately mitigate the construction noise impacts for the ABMSC or the Kaiser projects.

Construction Vibration Comparison: The less-than-significant vibration impact finding in the MTV 2008 EIR is consistent with the findings in the ABSMC EIR and the Kaiser EIR. Neither the ABSMC EIR nor the Kaiser EIR identified any vibration impacts and both projects include construction activities that are significantly more intense than the MTV Project. The ABSMC EIR states: "since the proposed project would not include any vibration-causing activity aside from that associated with construction and motor vehicles, it can be assumed that no impact would occur with regard to criterion 6) [vibration]. (Draft EIR page 4.5-12). The Kaiser EIR noise and vibration analysis is silent on the topic.

Comment 7 – Environmental Review for the Stage One FDP and VTTM

The comment asserts that a subsequent EIR must be prepared to analyze the impact of the "modified" project on the Surgery Center, the new circumstance of the continued operation of the Surgery Center, and the new information regarding the removal of the Surgery Center from the project.

Response 7. See Responses 1 and 2 above. The Surgery Center is not being removed from the MTV project. Thus, this is not a substantial change to the MTV Project. The continued operation of the Surgery Center until Phase 5 is proposed for development was assumed in the 2008 EIR. Thus, this is not a substantial change with respect to the circumstances under which the project is undertaken. Because the Surgery Center is not being removed from the MTV Project, this is

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 15

not new information. Therefore, none of the CEQA Guidelines 15162 criteria for subsequent environmental review are triggered and no subsequent EIR is required.

Comment 8 – Substantial Conformance with Preliminary Development Plan Approval

The comment asserts that because the Surgery Center has been removed from the MTV Project, the Phase/Stage 1 FDP is not in substantial conformance with the approved preliminary development plan. Additionally, the comment asserts that the City cannot make the required findings for a PUD approval.

Response 8. As explained above, the Surgery Center has not been removed from the MTV Project. City staff evaluated the Phase/Stage 1 FDP application and found it substantially conforms to the approved PUD/preliminary development plan (see Approved November 3, 2010 Planning Commission Report (revised on 11/3/10). The PUD for the MTV Project was approved in 2008. This approval and its findings are no longer subject to challenge.

Comment 9 – Approval the Stage One VTTM

The comment asserts that the City cannot approve the VTTM because the Project is likely to cause serious public health and safety problems related to significant impacts on patients at the Surgery Center and the City's SCAs are not adequate.

Response 9. Please refer to Air Quality Master Response to Attachment A, Illingworth & Rodkin, letter dated December 21, 2010, below, which demonstrate that the approval of the VTTM will not cause any public health or safety problems for the Surgery Center patients.

Attachment A: Illingworth & Rodkin, letter dated December 21, 2010

This letter details the Surgery Center's specific air quality concerns. The letter presents concerns regarding acute impacts from increased dust and increased exposure to diesel particulate matter that would result based on the assertion that the MTV Project has been changed to eliminate the Surgery Center site and construction will occur immediately adjacent to the Surgery Center.

The following analysis provides a Master Response to the air quality issues raised.

TO: Eric Angstadt and Catherine Payne DATE: March 18, 2011 PAGE: 16

Air Quality Master Response

As discussed above, the MTV Project has not been changed to eliminate the Surgery Center site. This comment also incorrectly states that the 2008 EIR did not identify any sensitive receptors adjacent to the Project and did not address localized impacts from construction equipment exhaust. The 2008 EIR air quality analysis identifies sensitive receptors and provides an analysis of construction-related air quality impacts.

The 2008 EIR states that the MTV Project would contribute to regional ozone emissions in the form of emissions from construction vehicles and would contribute to particulate matter emissions through construction vehicle emissions and the disturbance of soil within the project site during the construction period (p. 245). Additionally, an estimate of the construction emissions was prepared based on preliminary construction plans using the URBEMIS 2007 model. Table IV.D-6 (Draft EIR, p. 247) shows the construction emission model results.⁷ The temporary construction-period air quality impacts (for all pollutants) were found to be less-than-significant with the implementation of both the City's air quality SCAs, including the standard and enhanced measures for dust control and the construction equipment measures (listed as listed as COA AIR-1 and AIR-2 in the 2008 EIR).

The MTV Project's potential effects on sensitive receptors are addressed on page 246 of the Draft EIR under subsection (5) "Exposure of sensitive receptors to substantial pollutant concentrations." The section describes sensitive receptors as facilities that house or attract children, the elderly, and people with illnesses or others who are especially sensitive to the effects of air pollutants. Hospitals, schools, convalescent facilities, and residential areas are cited as examples of sensitive receptors. The 2008 EIR finds that construction of the project would temporarily increase localized emissions and that construction-period air quality impacts (for all pollutants), including impacts to sensitive resources, would be less-than-significant with implementation of the SCAs for dust control and construction equipment measures. (Draft EIR page 246.)

Although no new analysis is warranted under CEQA, a health risk assessment was undertaken to address the Surgery Center's concerns and confirm the EIR's finding that no significant impacts related to construction air quality concerns would occur (see, Health Risk Assessment, Exhibit C). The analysis considered a detailed construction equipment schedule for Phases 1 and 2 that was

⁷ Since the certification of the 2008 EIR, the Bay Area Air Quality Management District (BAAQMD) has adopted new CEQA thresholds for construction emissions. None of the results listed in Table IV.D-6 exceed the new BAAQMD thresholds for construction emissions. BAAQMD CEQA Guidelines (June 2010), p.2-6. However, those guidelines do not apply here because the City commenced review of the Phase 1 FDP and the VTTM applications, including a review under CEQA to determine if any of the factors under CEQA Guidelines sections 15162 or 15163 were implicated CEQA review of Phase 1 commenced prior to February 2010.

To:Eric Angstadt and Catherine PayneDATE:March 18, 2011PAGE:17

provided by the project sponsor (see Exhibit I, Construction Equipment Schedule, dated January 28, 2011). The findings from this health risk assessment are summarized below.

A health risk assessment (HRA) was conducted to assess health related air quality impacts from construction on patients and workers at the Surgery Center. The HRA assessed the impacts from the Phase/Stage 1 FDP and the Phase/Stage 2 FDP construction activities, because the project sponsor has submitted to the City the Phase/Stage 2 FDP application. Using the detailed construction schedule and equipment list provided by the Keystone Development Group and a combination of the California Air Resources Board's URBEMIS 2007 and HARP models, a detailed HRA was developed. The URBEMIS 2007 model was used to translate the construction details into pollutant emissions rates. These emissions were then assigned locations on the MTV Project site corresponding with the construction phasing plan and within those areas, placed closer to the Surgery Center to maximize the predicted impact. The HARP model was then used to combine these emissions and local meteorological conditions into an air dispersion model to predict pollutant concentrations and corresponding health risk levels. To insure completeness, the health risk levels were determined not only for the patients and workers at the Surgery Center, but also for the residences adjacent to the project site. It is standard HRA methodology to assess only the outdoor risk levels, since the amount of protection afforded by buildings varies substantially. It is probable that the Surgery Center provides above average protection to patients and workers inside the building, however, this HRA does not attempt to quantify that protection.

The primary health concern is the short-term acute affects from the exhaust of the heavy-duty construction equipment operating in close proximity to the Surgery Center. However, there is also a longer term exposure to the workers at the Surgery Center, and possibly to patients of the Surgery Center. Although the Surgery Center does not have inpatient accommodations, this HRA includes the expected carcinogenic and chronic health risks to a patient staying not only overnight but doing so for the entire construction period. It is assumed that the workers stay 8 hours per day on average and continue to work at the Surgery Center for the entire construction period. The HRA conservatively assumes that doctors, nurses, and patients spend all day outside on the side of the Surgery Center building nearest to the construction activities. Based on these conservative assumptions, Table 1 shows the HRA results. The BAAQMD additionally requires that the long-term carcinogenic health risk results have age factors applied to account for the range of age groups in the general population. Table 2 shows the age groups, their adjustment factors, and the adjusted carcinogenic health risk level for someone staying at the Surgery Center for the full construction period, 24 hours a day or for residents of the nearby homes.

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 18

Risk Category	Carcinogenic Inhalation Health Risk	Chronic Inhalation Health Index	Acute Inhalation Health Index	Threshold Exceeded
2-Year Patient Risks	0.24 in 1 million	0.0061	0.04	No
Worker Risks	0.047 in 1 million	0.0061	0.04	No
Residential Risks	0.24 in 1 million	0.0061	0.04	No
BAAQMD Threshold	10 in 1 million	1	1	

Table 1: Inhalation Health Risks from Construction Operations

Source: LSA Associates, Inc., January 2011

Table 2: 70-Year Carcinogenic Age Group Adjustment

			Carcinogenic Inhalation
Risk Group	ASF	Duration	Health Risk
3rd Trimester to age 2 years	10	2.25/70	0.077 in a million
age 2 years to age 16 years	3	14/70	0.14 in a million
age 16 to 70 years	1	54/70	0.20 in a million
Adjusted 70 year lifetime risk			0.41 in a million
BAAQMD Threshold			10 in a million
Threshold Exceeded			No

Source: LSA Associates, Inc., January 2011

As shown on Tables 1 and 2 for both patients and workers at the Surgery Center, as well as nearby residents, construction operations would result in a maximum health risk level that is below the BAAQMD's criterion of significance (10 in 1 million) for cancer health effects and for chronic or acute health risks. While the Surgery Center patients may be uniquely sensitive to air pollution, these health risk levels are substantially below the BAAQMD's thresholds of significance, making it unlikely that anyone, even uniquely sensitive individuals, would experience a negative health effect.

Historically, the BAAQMD has used the criterion of 10 in 1 million to determine the risk for point sources such as emissions from industrial facilities. This threshold was developed for these kinds of emissions sources that operate continuously for decades. Applying this threshold to a relatively brief event, such as the construction of this project, is very conservative. Additionally, the BAAQMD has documented that the best management approach to fugitive dust emissions from construction activities is an effective approach that reduces fugitive dust from 30 percent to more than 90 percent. Through the City's SCA, which are listed as COA AIR-1 and AIR-2 in the

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 19

2008 EIR, the MTV Project must implement best management practices to reduce fugitive dust emissions.

Attachment B: Charles M Salter Associates, letter dated December 21, 2010

This letter details the Surgery Center's specific construction noise and vibration concerns and asserts that the project would result in potentially significant noise and vibration impacts. The concerns presented are based on the incorrect assertion that the MTV Project has been changed to eliminate the Surgery Center site.

Noise Master Response

The 2008 EIR, Section IV.E-7, Noise, includes a discussion of potential effects associated with sensitive receptors during both construction and operation periods and assumes that pile driving may be necessary. The analysis assumes that the MTV Project will be built in five phases, over a seven-year period (page 299) and that the Surgery Center property would be the last phase (page 70). Page 299 of Section IV.E-7, Noise, states:

Construction of the project is to occur over a seven-year period, beginning in 2009. During this period, a wide variety of construction remediation and demolition equipment would be used and materials would be transported to and from the site during each development phase.

The 2008 EIR evaluated the increase in traffic flow on local streets associated with the transport of workers, equipment, and materials to and from the project site. The 2008 EIR found that the increase in traffic flow on the surrounding roads due to construction traffic would be minimal, but there would be short-term intermittent high noise levels associated with trucks arriving to and departing from the project site.

The 2008 EIR also evaluated noise generated by heavy equipment operating on the project site, including the potential for pile driving. The 2008 EIR found that construction-related noise associated with typical construction equipment would be 91 dBA Lmax at a distance of 50 feet and that sensitive land uses (or sensitive receptors) would be located within 50 feet of construction. For pile driving on the MTV Project site, the 2008 EIR found that sensitive receptors located within 50 feet of the MTV Project site could be exposed to maximum noise levels of up to 93 dBA Lmax. (Draft EIR p. 299)

The analysis found that the MTV Project construction-related noise effects would be reduced to less than significant with implementation of the City's SCAs for construction noise which are included in the 2008 EIR as: COA NOISE-1: Days/Hours of Construction Operation; COA NOISE-2:

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 20

Noise Control; COA NOISE-3: Noise Complaint Procedures; and COA NOISE-5: Pile Driving and Other Extreme Noise Generators.

As part of the process of preparing for construction of Phase/Stage 1 and Phase/Stage 2 and in compliance with COA NOISE-5, the project applicant retained an acoustical consultant to prepare a final noise plan based on the FDP submittal that details a set of site specific noise attenuation measures to ensure that maximum feasible noise attenuation will be achieved.⁸ The plan (see Exhibit D) considers both Phase/Stage 1 and Phase/Stage 2 of the MTV Project and the associated construction equipment schedules provided by the project sponsor (see Exhibit I, Construction Equipment Schedule, dated January 28, 2011). The plan confirms that noise levels from construction activities would be reduced consistent with the requirements of COA-NOISE-5 with implementation of the noise conditions, including the best management practices outlined in COA NOISE 2 and the use of temporary sound walls in certain areas, consistent with the types of measures listed in the COA-NOISE-5, which states:

The noise reduction plan shall include, but not be limited to, an evaluation of implementing the following measures. These attenuation measures shall include as many of the following control strategies as applicable to the site and construction activity:

- a) Erect temporary plywood noise barriers around the construction site, particularly along on sites adjacent to residential buildings;
- b) Implement "quiet" pile driving technology (such as pre-drilling of piles, the use of more than one pile driver to shorten the total pile driving duration), where feasible, in consideration of geotechnical and structural requirements and conditions;
- c) Utilize noise control blankets on the building structure as the building is erected to reduce noise emission from the site;
- d) Evaluate the feasibility of noise control at the receivers by temporarily improving the noise reduction capability of adjacent buildings by the use of sound blankets for example, and implement such measure if such measures are feasible and would noticeably reduce noise impacts; and
- e) Monitor the effectiveness of noise attenuation measures by taking noise measurements.

The noise reduction plan includes the following requirements, which will reduce the projected worst case hourly average construction noise levels at the closest receptor sites:

(1) Prior to initiation of on-site construction-related earthwork activities, a minimum 8-foot high temporary sound barrier shall be erected along the project property line abutting the residential sensitive land uses that are adjacent to the construction site on MacArthur Boulevard and Telegraph Avenue.

⁸ Consistent with the requirements of COA-NOISE-5, which requires a noise plan that includes a set of site-specific noise attenuation measures based on the project's final design plans be submitted to the City for review and approval prior to the commencement of construction, the project sponsor will prepare and submit subsequent noise reduction plans for future phases once final design plans are available and construction is planned to commence.

To: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 21

(2) Prior to initiation of on-site construction-related earthwork activities, a minimum 6 foot high temporary sound barrier shall be erected along the project property line abutting the outpatient Surgery Center.

(3) These sound barriers shall be constructed with a minimum surface weight of 4 pounds per square foot and shall be constructed so that vertical and horizontal gaps are eliminated. These temporary barriers shall remain in place through the construction phase in which heavy equipment, such as excavators, dozers, scrapers, loaders, rollers, pavers, and dump trucks are operating within 150 feet of the edge of the construction site and the adjacent sensitive land uses.

These noise reduction strategies will ensure that construction noise during the loudest periods of construction for the Phase/Stage 1 and Phase/Stage 2 FDPs will be reduced as required by COA-NOISE-5. In addition, the Project contractor must also comply with all of the other noise reduction strategies in the COA-NOISE-1,-2,-3, and -4, which will further reduce construction noise impacts in the Project vicinity. The noise reduction plan also includes requirements for monitoring construction noise through measurements and for adjusting equipment use if the monitoring identifies construction noise that exceeds the City's thresholds.

Construction Vibration Master Response

The 2008 EIR acknowledged that construction activities could cause ground-borne vibration in the Project vicinity (see Draft EIR p. 300). Under the City's significance criteria, temporary vibration from construction work is not considered significant. The City's Standard Condition of Approval for vibration (listed as COA-NOISE-6, Vibration Adjacent Historic Structures, in the 2008 EIR) requires the project applicant to retain an appropriate professional to determine threshold levels of vibration that could damage nearby buildings and design means and methods of construction that would not exceed the thresholds.

Pursuant to the SCA, to respond to the Surgery Concerns, and to confirm that no significant impacts related to vibration would result from the MTV Project construction using the FTA criteria referenced by the Surgery Center, the project sponsor retained Wilson, Ihrig and Associates (WIA), experts in vibration analysis, to analyze the Construction Equipment Schedule (see Exhibit I) for Phases 1 and 2 (see Exhibit E, Vibration Memorandum). As part of the Construction Equipment Schedule, the Project Sponsor has committed to the use of reduced-vibratory construction methods, which would reduce the vibration generated by the construction activities to below the FTA thresholds proposed by the Surgery Center.

TO: Eric Angstadt and Catherine PayneDATE: March 18, 2011PAGE: 22

The WIA analysis confirms that anticipated vibration from construction activities for Phase 1 and 2 of the MTV Project would not exceed the FTA Category 1 criterion, which applies to buildings where vibration would interfere with interior operations, at the Surgery Center.

Pursuant to the SCA (see COA NOISE-6 in 2008 EIR), WIA recommends that (1) the contractors implement the Construction Equipment Schedule elements detailed in Exhibit I; and (2) vibration monitoring be conducted at the Surgery Center to document the baseline conditions during operations prior to construction and to monitor the vibration at the facilities during the key periods of construction that are subject to vibration to verify that construction-related vibration is not exceeding the FTA category 1 criterion. The key periods of construction would occur when the equipment discussed above are in operation (e.g., vibratory roller compactor, vibrating plate compactors, and/or jumping jack). As part of compliance with COA NOISE-6, the project sponsor will be required to comply with these recommendations which will ensure the impact remains less than significant.

Conclusion

The Surgery Center letters do not raise any issues or contain any new information requiring the City to prepare a supplemental or subsequent EIR for the MTV Project Phase 1 FDP and VTTM as described in the Executive Summary above.

Exhibits

- Exhibit A, MTV Project Site Location and Illustrative Plans
- Exhibit B, Referenced Conditions of Approval
- Exhibit C, Health Risk Assessment
- Exhibit D, Noise Reduction Plan
- Exhibit E, Vibration Memorandum
- Exhibit F, Development Agreement, Section 3.3.3
- Exhibit G, December 21 Letter from Surgery Center with comments enumerated
- Exhibit H, Summary of Negotiations with the Surgery Center
- Exhibit I, Construction Equipment Schedule

MacArthur Transit Village Project Site

Exhibit A- EXrbleBISiteArea

Surgery Center Parcel

Note: This exhibit only includes pages with conditions of approval referenced in the Surgery Center Letters Response Memorandum. See November 3, Planning Commission Report, dated November 3, 2010 (as amended and approved by the Planning Commission on 11/13/10)

EXHIBIT A

CONDITIONS OF APPROVAL FOR THE MACARTHUR TRANSIT VILLAGE PROJECT

Part 1: General Conditions of Approval

1. Approved Use

Ongoing

- a) The project shall be constructed and operated in accordance with the authorized use as described in the application materials, staff report, and the plans submitted on **May 28**, **2008**, and as amended by the following conditions. Any additional uses or facilities other than those approved with this permit, as described in the project description and the approved plans will require a separate application and approval. Any deviation from the approved drawings, Conditions of Approval or use shall require prior written approval from the Director of City Planning or designee. The project may however increase the number of permitted residential dwelling units up to a maximum of 675 dwelling units, as analyzed in the MacArthur Transit Village Project EIR provided that a) the ratio of affordable units (20% of market rate units) is maintained; and the resulting project design with the additional units shall conform in all major respects with the approved Preliminary Development Plan.
- b) This action by the **City Planning Commission** ("this Approval") includes the approvals set forth below. This Approval includes:

i.Planned Unit Development (PUD), under Oakland Planning Code Chapters 17.122 and 17.140;

ii.Major Conditional Use Permit (CUP), under Oakland Planning Code Chapter 17.134; and

iii.Design Review, under Oakland Planning Code Chapter 17.136

c) This Approval shall not become effective unless the proposed legislative actions (rezoning and text amendment) occur as stated in Condition of Approval 20.

2. Effective Date, Expiration, Extensions and Extinguishment

Ongoing

Unless a different termination date is prescribed, this Approval shall expire **two years** from the approval date, unless within such period all necessary permits for construction of Stage 1 (the BART Parking Garage) have been issued. Upon written request and payment of appropriate fees submitted no later than the expiration date of this permit, the Director of City Planning or designee may grant two one-year extensions of this date, with additional extensions subject to approval by the approving body. Expiration of any necessary building permit for this project may invalidate this Approval if the said extension period has also expired. These time periods are "tolled" due to litigation challenging this approval and thus such time shall not be counted toward expiration of this approval. The Preliminary Development Plan Approval for the Planned Unit Development Permit shall expire June 4, 2018 and all Final Development Plan phases shall be reviewed and approved by that date (see below for details on FDP Staging).

Notwithstanding, the timeframes provided for in this Condition no. 2 the project sponsor shall, if feasible, make reasonable effort to proceed with all phases of the project as expeditiously as possible, and have the full build out of the project be completed as early as possible.

FDP Staging

Submittal of Final Development Plans (FDPs) shall be permitted in five (5) stages over a 10 year time period from the date of this approval, as detailed below.

(a) Each stage of FDP is described below:

- Stage 1. Stage 1 FDP for the project will include the construction of Building E, the replacement BART parking garage, site remediation, Internal Drive, the Frontage Road improvements, and the portion of Village Drive that extends from the Frontage Road to the Internal Drive. Stage 1 FDP shall be submitted to the Planning Department for review and processing and the project applicant shall make regular and consistent progress toward approval of Stage 1 FDP within 1 year from the date of this approval. If approved, construction associated with Stage 1 FDP shall commence in earnest by not later than 2 years from the date of Stage 1 FDP approval.
- ii. <u>Stage 2</u>. Stage 2 FDP for the project will include construction of Building D, consisting of a minimum of 90 below market rate rental units. Stage 2 FDP shall be submitted to the Planning Department for review and processing and the project applicant shall make regular and consistent progress toward approval of Stage 2 FDP within 3 years from the date of this approval. If approved, construction associated with Stage 2 FDP shall commence in earnest by not later than 2 years from the date of Stage 2 FDP approval.
- iii. <u>Stage 3</u>. Stage 3 FDP for the project will include construction of Building A, consisting of up to 240 ownership residential units and 26,000 square feet of commercial space. All street improvements, including the completion of Village Drive and any new traffic signals required by the project, will be completed in this phase. This phase will also include the completion of a public plaza directly across Frontage Road from the existing BART Plaza. Stage 3 FDP shall be submitted to the Planning Department for review and processing and the project applicant shall make regular and consistent progress toward approval of Stage 3 FDP within 3 years-from the date of this approval. If not feasible, Stage 3 FDP approval may be delayed up to a year. If approved, construction associated with Stage 3 FDP shall commence in earnest not later than 2 years from the date of Stage 3 FDP approval.
- iv. <u>Stage 4</u>. Stage 4 FDP for the project will include the construction of Building B, consisting of up to 150 ownership residential units and 5,500 square feet of commercial space. Stage 4 FDP shall be submitted to the Planning Department for review and processing and the project applicant shall make regular and consistent progress toward approval of Stage 4 FDP within 8 years from the date of this approval. If approved, construction

associated with Stage 4 FDP shall commence in earnest not later than 2 years from the date of Stage 4 FDP approval.

- v. <u>Stage 5</u>. Stage 5 FDP for the will include the construction of Building C, consisting of up to 195 ownership residential units and 12,500 square feet of commercial space. This phase will also include the construction of a community center use on the ground floor of Building C. Stage 5 FDP shall be submitted to the Planning Department for review and processing 10 years from the date of this approval. If approved, construction associated with Stage 5 FDP shall commence in earnest not later than 2 years from the date of Stage 5 FDP approval.
- (b) For purposes of this conditions, the term "commence in earnest" shall mean to initiate activities based on a City-issued building permit and other necessary permit (s) and diligently prosecute such permit(s) in substantial reliance thereon and make regular and consistent progress toward the completion of construction and the issuance of final certificate of occupancy, including successful completion of building inspections to keep the building permit and other permits active without the benefit of extension.
- (c) Provided that Stage 1 and 2 FDPs are approved in accordance with the above time frames, the Developer shall have the discretion to change which buildings (A, B, or C) are constructed in which Stages (3, 4 or 5) provided that the FDP submittal dates for these stages remain the same. All other modifications to FDP staging shall be subject to review and approval by the Planning Commission.
- (d) FDP Stages may be combined and reviewed prior to the outlined time frames. If each stage of FDP is not submitted/completed within the time frames outlined above, the PDP shall be considered null and void.
- (e) If, subsequent to this approval, a Development Agreement for this project is adopted by the City, the phasing and construction timeframes prescribed within the Development Agreement shall supersede this condition of approval and govern construction phasing for the project.

3. <u>Scope of This Approval; Major and Minor Changes</u>

Ongoing

The project is approved pursuant to the Planning Code only. Minor changes to approved plans may be approved administratively by the Director of City Planning or designee. Major changes to the approved plans shall be reviewed by the Director of City Planning or designee to determine whether such changes require submittal and approval of a revision to the approved project by the approving body or a new, completely independent permit.

4. <u>Conformance to Approved Plans; Modification of Conditions or Revocation</u> Ongoing

- a) Site shall be kept in a blight/nuisance-free condition. Any existing blight or nuisance shall be abated within 60-90 days of the project sponsor obtaining site control, unless an earlier date is specified elsewhere.
- b) The City of Oakland reserves the right at any time during construction to require certification by a licensed professional that the as-built project conforms to all applicable zoning requirements, including but not limited to approved maximum heights and minimum setbacks. Failure to construct the project in accordance with approved

accordance with the California Air Resources Board and the Office of Environmental Health and Hazard Assessment for exposure to vehicular exhaust from roadways, the project sponsor has agreed to incorporate into the project a mechanical ventilation system that meets the efficiency standard of the MERV 13 for those units with windows fronting the freeway or Frontage Road. The ventilations shall be subject to review and approval by the City's Building Services Division. Appropriate maintenance, operation and repair materials will be furnished to project residents.

25. <u>Components of Final Development Plans.</u>

Prior to approval of Any Final Development Plans

In accordance with the Planning Code Chapter 17.140, each stage of FDP shall: (a) Conform to all major respects with the approved Preliminary Development Plan received by the Planning Division on May 28, 2008, and included as Exhibit F;

(b) Comply with development standards of the S-15 Zone, except and modified for building height as bonus for the Planned Unit Development and shown in the Preliminary Development Plan;

(c) Be consistent with the MacArthur Transit Village Design Guidelines included in these conditions as Exhibit C-3;

(d) Include all information included in the preliminary development plan plus the following:

- i. the location of water, sewerage, and drainage facilities;
- ii. detailed building floor plans, elevations and landscaping plans;
- iii. the character and location of signs;
- iv. plans for street improvements; and
- v. grading or earth-moving plans.

(e) Be sufficiently detailed to indicate fully the ultimate operation and appearance of the development stage <u>including the quality of exterior materials and windows</u>; and

(f) Include copies of legal documents required for dedication or reservation of group or common spaces, for the creation of nonprofit homes' association, or for performance bonds, shall be submitted with each Final Development Plan.

26. Subdivision Maps

Prior to final approval of Each Final Development Plan

Final Development Plans shall be accompanied by subdivision maps as required to subdivide the property. The subdivision maps shall be reviewed and processed in accordance with Title 17, Subdivisions, of the City of Oakland Municipal Code and the Subdivision Map Act.

27. Final Development Review and Approval by City Council.

Prior to final approval of Any Final Development Plan

All Final Development Plan(s) shall be subject to review and recommendation by the Planning Commission's Design Review Committee and Planning Commission, with final approval by the City Council.

28. Minimum Setback to Buildings Adjacent to Project Site.

Prior to issuance of a building permit

All buildings within the project shall maintain a minimum 5 foot setback, except at the ground level, to existing buildings adjacent to the project site. The 5 foot minimum setback will ensure a minimum setback of 9 feet from the south windows located in the building light

	PROJECT	REPORTING PROGRAM
	TRANSIT VILLAGE	MONITORING AND
EXHIBIT C-1	MACARTHUR	MITIGATION

Mitigation Monitoring and Reporting Program

		Mitigation Monito	ring	Reporting	
Standard COA/MM	Monitoring Schedule	Monitoring Responsibility	Monitoring Procedure	Comments	Date/ Initials
D. AIR QUALITY					
 COA AIR-1: Dust Control. <i>Prior to issuance of a demolition, grading, or building permit.</i> During construction, the project applicant shall require the construction contractor to implement the following measures required as part of BAAQMD basic and enhanced dust control procedures required for construction sites. These include: BASIC (Applies to ALL construction areas at least twice daily. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever possible. b) Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 2 feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer). c) Pave, apply water three times daily, or apply (non-toxic) soil staging areas at construction sites. d) Sweep daily (with water sweepers using reclaimed water if possible) all paved access roads, parking areas and staging areas at construction sites. e) Sweep streets (with water sweepers using reclaimed water if possible) at the end of each day if visible soil material is carried onto adjacent paved roads. f. Imit the amount of the disturbed area at any one time, where 	Ongoing throughout demolition, grading, and/or construction	City of Oakland, CEDA, Building Services Division	 Make regular visits to the project site to ensure that all dust-control mitigation mitigation measures are being implemented. Verify that a designated dust control coordinator is on-call during construction periods. 		
teasible.					

EXHIBIT A

16

N:\2007\1407010 MacArthur BART Transit Village Contract Planning\Documents\Planning Commission\6-4-08 PC Hearing\EXHIBIT C-1_MMRP. doc (5/11/2009)

	PROJECT	REPORTING PROGRAM
	TRANSIT VILLAGE	MONITORING AND
EXHIBIT C-1	MACARTHUR	MITIGATION

Mitigation Monitoring and Reporting Program

,	-				
		Mitigation Monito	oring	Reporting	
Standard COA/MM	Monitoring Schedule	Monitoring Responsibility	Monitoring Procedure	Comments	Date/ Initials
g) Suspend excavation and grading activity when winds (instantaneous gusts) exceed 25 mph.					
h) Pave all roadways, driveways, sidewalks, etc. as soon as feasible. In addition, building pads should be laid as soon as possible after grading unless seeding or soil binders are used.					
 Replant vegetation in disturbed areas as quickly as feasible. Enclose, cover, water twice daily or apply (non-toxic) soil 					
stabilizers to exposed stockpiles (dirt, sand, etc.). k) Limit traffic speeds on unpaved roads to 15 miles per hour.					
 Clean off the tires or tracks of all trucks and equipment leaving any unpaved construction areas. 					
ENHANCED (All "Basic" Controls listed above plus the following if the construction site is greater than 4 acres)					
a) All "Basic" controls listed above, plus:					
b) Install sandbags or other erosion control measures to prevent silt runoff to public roadways.					
 c) Hydroseed or apply (non-toxic) soil stabilizers to inactive construction areas (previously graded areas inactive for one month or more). 					
d) Designate a person or persons to monitor the dust control program and to order increased watering, as necessary, to prevent transport of dust offsite. Their duties shall include holidays and weekend periods when work may not be in					
progress. The name and telephone number of such person shall be provided to the BAAQMD prior to the start of					
construction as well as posted on-site over the duration of construction.					
e) Install appropriate wind breaks at the construction site to					
minimize wing plown dust.					
	E PROJECT	D REPORTING PROGRAM			
---------	-----------	---------------------	--		
	LAG	AND			
	٦IL	RING			
	N SI T	NITO			
	TRA	МОМ			
ċ	JUH.	LI O N			
I B I T	CART	IGAT			
ЕХН	MAC	MIT			

		Mitigation Monito	orina	Reporting	
	Monitoring	Monitoring	Monitoring	-	Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
 COA AIR-2: Construction Emissions. <i>Prior to issuance of a demolition, grading, or building permit.</i> To minimize construction equipment emissions during construction, the project applicant shall require the construction contractor to: a) Demonstrate compliance with BAAQMD Regulation 2, Rule 1 (General Requirements) for all portable construction equipment subject to that rule. BAAQMD Regulation 2, Rule 1, provides the issuance of authorities to construct and permits to operate certain types of portable equipment used for construction purposes (e.g., gasoline or dissel-powered engines used in conjunction with power generation, pumps, compressors, and cranes) unless such equipment complies with all applicable requirements of the "CAPCOA" Portable Equipment Registration Rule" or with all applicable requirements of the "CAPCOA" Portable Equipment greater than 50 horsepower (no more than 30 days prior to the start of use of that equipment). Periodic tune-ups (every 90 days) shall be performed for such endingment used continuously during the construction period. 	Prior to issuance of a demolition, grading, or building permit, and ongoing throughout construction	City of Oakland, CEDA, Building Services Division	Verify that all construction equipment meets mitigation measures.		
E. NOISE AND VIBRATION					
COA NOISE-1: Days/Hours of Construction Operation. <i>Ongoing throughout demolition, grading, and/or construction.</i> The project applicant shall require construction contractors to limit standard construction activities as follows: a) Construction activities are limited to between 7:00 a.m. and 7:00 p.m. Monday through Friday, except that pile driving and/or other extreme noise generating activities greater than 90 dBA limited to between 8:00 a.m. and 4:00 p.m. Monday through Friday.	Ongoing throughout demolition, grading, and/or construction	City of Oakland, CEDA, Building Services Division	Make regular visits to the construction site to ensure that construction activities are restricted the hours designated in COA NOISE-1.		

N:\2007\1407010 MacArthur BART Transit Village Contract Planning\Documents\Planning Commission\6-4-08 PC Hearing\EXHIBIT C-1_MMRP. doc (5/11/2009)

	ROJECT	EPORTING PROGRAM	
KHIBIT C-1	ACARTHUR TRANSIT VILLAGE P	ITIGATION MONITORING AND F	

· · · · ·		Mitigation Monito	ring	Reporting	
	Monitoring	Monitoring	Monitoring		Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
b) Any construction activity proposed to occur outside of the standard hours of 7:00 a.m. to 7:00 p.m. Mondav through					
Friday for special activities (such as concrete pouring which					
may require more continuous amounts of time) shall be					
evaluated on a case-by-case basis, with criteria including the					
proximity of residential uses and a consideration of resident's preferences for whether the activity is acceptable if the overall					
duration of construction is shortened and such construction					
activities shall only be allowed with the prior written					
autilouization of the building services division.					
c) Construction activity shall not occur on Saturdays, with the					
 Prior to the building being enclosed, requests for Saturday 					
construction for special activities (such as concrete pouring					
which may require more continuous amounts of time), shall					
be evaluated on a case-by-case basis, with criteria including					
the proximity of residential uses and a consideration of					
resident's preferences for whether the activity is acceptable					
if the overall duration of construction is shortened. Such					
construction activities shall only be allowed on Saturdays					
with the prior written authorization of the Building Services					
Division.					
 After the building is enclosed, requests for Saturday 					
construction activities shall only be allowed on Saturdays					
with the prior written authorization of the Building Services					
Division, and only then within the interior of the building					
with the doors and windows closed.					
d) No extreme noise generating activities (greater than 90 dBA)					
shall de allowed on Saturdays, with no exceptions.					

		Mitigation Monito	oring	Reporting	
Standard COA/MM	Monitoring Schedule	Monitoring Responsibility	Monitoring Procedure	Comments	Date/ Initials
e) No construction activity shall take place on Sundays or Federal holidays.					
f) Construction activities include but are not limited to: truck idling, moving equipment (including trucks, elevators, etc.) or materials, deliveries, and construction meetings held on-site in a non-enclosed area.					
 COA NOISE-2: Noise Control. Ongoing throughout demolition, grading, and/or construction. To reduce noise impacts due to construction, the project applicant shall require construction program, subject to city review and approval, which includes the following measures: a) Equipment and trucks used for project construction shall utilize the best available noise control techniques (e.g., improved mufflers, equipment redesign, use of intake silencers, ducts, engine enclosures and acoustically-attenuating shields or shrouds, wherever feasible). b) Except as provided herein, impact tools (e.g., jack hammers, pavement breakers, and rock drills) used for project construction shall be hydraulically or electrically powered wherever possible to avoid noise associated with compressed air exhaust from pneumatically powered tools. However, where use of pneumatically powered tools. However, where use of pneumatically powered tools is unavoidable, an exhaust muffler on the compressed air exhaust shall be used; this muffler can lower noise levels from the exhaust by up to about 10 dBA. External jackets on the tools themselves shall be used if such jackets are commercially available, and this could achieve a reduction of 5 dBA. Quieter procedures shall be used, such as drills rather than impact equipment, whenever such procedures are available and consistent with construction procedures. 	Ongoing throughout demolition, grading, and/or construction	City of Oakland, CEDA, Building Services Division	 Verify that a site- specific noise reduction program has been prepared and implemented. Make regular visits to the construction site to ensure that noise from construction activities is appropriately controlled. 		

	E PROJECT	D REPORTING PROGRAM	
	LAG	AND	
	٦IL	RING	
	N SI T	NITO	
	TRA	МОМ	
ċ	JUH.	LI O N	
I B I T	CART	IGAT	
ЕХН	MAC	MIT	

		Mitigation Monito	oring	Reporting	
	Monitoring	Monitoring	Monitoring		Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
 c) Stationary noise sources shall be located as far from adjacent receptors as possible, and they shall be muffled and enclosed within temporary sheds, incorporate insulation barriers, or use other measures as determined by the City to provide equivalent noise reduction d) The noisiest phases of construction shall be limited to less than 10 days at a time. Exceptions may be allowed if the City determines an extension is necessary and all available noise reduction controls are implemented. 					
 COA NOISE-3: Noise Complaint Procedures. Ongoing throughout demolition, grading, and/or construction. Prior to the issuance of each building permit, along with the submission of construction documents, the project applicant shall submit to the City Building Services Division a list of measures to respond to and track complaints pertaining to construction noise. These measures shall include: a) A procedure and phone numbers for notifying the City Building Services Division staff and Oakland Police Department; (during regular construction hours and off- hours); b) A sign posted on-site pertaining with permitted construction days and hours and complaint procedures and who to notify in the event of a problem. The sign shall also include a listing of both the City and construction hours and off-hours); c) The designation of an on-site construction contractor's telephone numbers (during regular construction hours and off-hours); 	Submit list prior to the issuance of a building permit; Ongoing throughout demolition, grading, and/or construction	City of Oakland, CEDA, Building Services Division	Verify the implementation of the list of measures to respond to and track complaints pertaining to construction noise.		
enforcement manager for the project;					_

		P R O G R A	
	PROJECT	REPORTING	
	TRANSIT VILLAGE	MONITORING AND	
EXHIBIT C-1	MACARTHUR	MITIGATION	

		Mitication Monito		Donotting	
			6		
	Monitoring	Monitoring	Monitoring		Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
d) Notification of neighbors and occupants within 300 feet of the project construction area at least 30 days in advance of extreme noise generating activities about the estimated duration of the activity: and					
e) A preconstruction meeting shall be held with the job inspectors and the general contractor/on-site project manager to confirm that noise measures and practices (including construction hours, neighborhood notification, posted signs, etc.) are completed.					
COA NOISE-4: Interior Noise. <i>Prior to issuance of a building permit.</i> If necessary to comply with the interior noise requirements of the City of Oakland General Plan Noise Element and achieve an acceptable interior noise level, noise reduction in the form of sound-rated assemblies (i.e., windows, exterior doors, and walls) shall be incorporated into project building design, based upon recommendations of a qualified acoustical engineer. Final recommendations for sound-rated assemblies will depend on the specific building designs and layout of buildings on the site and shall be determined during the design phase; however, the following sound-rated assembly recommendations, based on the conceptual project layout and design (described in Chapter III, Project Description) should be included in the final study and will be included in the Standard Condition of Approval: An alternate form of ventilation, such as air conditioning systems, shall be included in the design for all units located within 659 feet of the centerline of 40 th Street, or within 153 feet of the centerline of 40 th Street, or within 166 feet of the centerline of Boulevard to ensure that widows can remain closed for prolonged periods of time to meet the interior noise standard and Uniform Building Code Requirements.	Submit noise recommend- ations prior to the issuance of a building permit for each phase of construction containing residential units Implement recommend ations according to timeframes outlined in plan	City of Oakland, CEDA, Building Services Division	Verify that appropriate sound-rated assemblies to reduce noise levels have been incorporated into the project building design.		

		PROGRAM
	PROJECT	REPORTING
	TRANSIT VILLAGE	MONITORING AND
EXHIBIT C-1	MACARTHUR	MITIGATION

•					
		Mitigation Monito	ring	Reporting	
	Monitoring	Monitoring	Monitoring		Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
All residential building façades directly exposed to and within 240 feet of the centerline of SR-24 must be constructed to meet the interior DNL 45 dB requirement; this likely could be achieved with an overall STC-30 rating with windows having a minimum STC-34 rating. This could be achieved with a typical 1-inch insulated glazing assembly, possibly with one light being laminated (or other appropriate example assembly). Quality control must be exercised in construction to ensure all air-gaps and penetrations of the building shell are controlled and sealed.					
COA NOISE-5: Pile Driving and Other Extreme Noise	Submit plan	City of Oakland,	 Verify that a plan 		
Generators. Ongoing throughout demolition, grading, and/or	prior	CEDA, Building	for reducing		
construction. To further reduce potential pier drilling, pile driving	commencing	Services Division	extreme noise		
and/or other extreme noise generating construction impacts	construction		generating		
greater than 90 dBA, a set of site-specific noise attenuation	activities		construction		
measures shall be completed under the supervision of a qualified	involving		impacts has been		
acoustical consultant. Prior to commencing construction, a plan	pile driving		prepared.		
for such measures shall be submitted for review and approval by	or other		- World that the alac		
the City to ensure that maximum feasible noise attenuation will	extreme		 Verily triat trie plan will achieve the 		
be achieved. This plan shall be based on the final design of the	noise		will actileve tile maximum feastible		
project. A third-party peer review, paid for by the project	generators;				
applicant, may be required to assist the City in evaluating the	Implement		IIOISE ALLEIIUALIOII.		
feasibility and effectiveness of the noise reduction plan submitted	measures		 Verify that a 		
by the project applicant. The criterion for approving the plan shall	according to		special inspection		
be a determination that maximum feasible noise attenuation will	timeframes		deposit has been		
be achieved. A special inspection deposit is required to ensure	outlined in		submitted.		
compliance with the noise reduction plan. The amount of the	the plan				
deposit shall be determined by the Building Official and the	,				
deposit shall be submitted by the project applicant concurrent					

EXHIBIT C-1 MACARTHUR TRANSIT VILLAGE PROJECT MITIGATION MONITORING AND REPORTING PROGRAM

Mitigation Monitoring and Reporting Program

		Mitigation Monitc	oring	Reporting	
	Monitoring	Monitoring	Monitoring		Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
with submittal of the noise reduction plan. The noise reduction					
plan shall include, but not be limited to, an evaluation of					
implementing the following measures. These attenuation					
measures shall include as many of the following control strategies					
as applicable to the site and construction activity:					
a) Erect temporary plywood noise barriers around the					
construction site, particularly along on sites adjacent to residential buildings:					
b) Implement "arritet" nile driving technology (such as pre-drilling					
of piles, the use of more than one pile driver to shorten the					
total pile driving duration), where feasible, in consideration of					
geotechnical and structural requirements and conditions;					
c) Utilize noise control blankets on the building structure as the					
building is erected to reduce noise emission from the site;					
d) Evaluate the feasibility of noise control at the receivers by					
temporarily improving the noise reduction capability of					
adjacent buildings by the use of sound blankets for example,					
and implement such measure if such measures are feasible					
and would noticeably reduce noise impacts; and					
e) Monitor the effectiveness of noise attenuation measures by					
taking noise measurements.					

N:\2007\1407010 MacArthur BART Transit Village Contract Planning\Documents\Planning Commission\6.4-08 PC Hearing\EXHIBIT C-1_MMRP.doc (5/11/2009)

EXHIBIT A

		PROGRAM
	PROJECT	REPORTING
	TRANSIT VILLAGE	MONITORING AND
EXHIBIT C-1	MACARTHUR	MITIGATION

Mitigation Monitoring and Reporting Progra	m				
		Mitigation Monito	oring	Reporting	
	Monitoring	Monitoring	Monitoring		Date/
Standard COA/MM	Schedule	Responsibility	Procedure	Comments	Initials
COA NOISE-6: Demolition/Construction Adjacent to Historic	Prior to the	City of Oakland,	Verify that a structural		
Structures. The project applicant shall retain a structural	issuance of	CEDA, Building	engineer or other		
engineer or other appropriate professional to determine	а	Services Division	appropriate		
threshold levels of vibration and cracking that could damage the	demolition,		professional has		
buildings adjacent to the project site and design means and	grading, or		determined the means		
methods of construction that shall be utilized to not exceed the	building		and methods of		
thresholds. Additionally, the project applicant shall submit a	permit for		construction will not		
demolition plan for review and approval so as not to unduly	building A		exceed threshold		
impact neighboring property improvements particularly 505 40th			levels of vibration that		
Street. Neighboring property improvements within 10 of the			may damage buildings		
project boundary shall be indicated on the demolition plan. The			adjacent to the project		
method of protection for any improvements within 5 feet of the			site.		
project boundary shall be specifically addressed in the demolition					
plan. The applicant shall submit such engineering report and					
demolition plan and means of compliance with the engineering					
recommendations to the City (CEDA Building Services) for review					
and approval and implement the approved plan.					
f)					

EXXHBIT A

BERKELEY 0666 TEL CARLSBAD 8076 FAX FORT COL

BERKELEY FRESNO ROCKLI CARLSBAD PALM SPRINGS SAN LUI FORT COLLINS POINT RICHMOND SOUTH

RIVERSIDE Rocklin San Luis obispo South San Francisco

MEMORANDUM

DATE:	March 11, 2011
TO:	Joe McCarthy, Project Manager, and Art May, Development Director, MacArthur Transit Community Partners
FROM:	Tony Chung and Ronald Brugger, LSA Associates, Inc.
SUBJECT:	Response to Holland & Knight Comment Letter on the EIR for the MacArthur Transit Village Project in the City of Oakland, California.

LSA Associates, Inc. (LSA) has reviewed the comment letter provided by Holland & Knight dated December 21, 2010 on the MacArthur Transit Village Project. Although none of the criteria have been met or circumstances have occurred under CEQA Guidelines section 15162 that would require any additional environmental review with respect to the Project, we have prepared an analysis, including a health risk assessment, responding to the contentions in this letter. The scope of this analysis was to evaluate the air quality impacts associated with construction of the Phase 1 and Phase 2 Final Development Plans of the MacArthur Transit Village project (Phase 1 and 2 FDPs)¹ based on the Construction Equipment Schedule, dated January 28, 2011.

In summary our analysis demonstrates (1) as stated in the Project EIR, the City's Standard Conditions of Approval with respect to dust and diesel emissions will mitigate potential impacts on the Surgery Center; and (2) the project construction would not create a health risk for patients and employees of the Surgery Center. Our responses are provided below.

Comment: The Surgery Center states that the following impacts will occur from Project construction:

- Dust and diesel particulate matter impacts on respiratory and cardiovascular patients uniquely sensitive to air pollution.
- Dust contamination of sterile medical devices, and
- Diesel particulate matter and fume impacts on patients and employees at the Surgery Center, including headaches and nausea.

LSA Response: The MacArthur Transit Village EIR correctly analyzed the dust and diesel particulate matter emissions associated with Project construction. The Project is subject to the City's Standard Conditions of Approval for dust (SCA-AIR-1) and construction equipment (SCA-AIR2), which are designed to reduce any potential impacts to a less-than-significant level. The requirements of these Standard Conditions of Approval are consistent with the Bay Area Air Quality Management District's (BAAQMD) basic and enhanced construction mitigation measures that were in effect when the EIR was published and remain generally consistent with the BAAQMD's basic and additional construction

¹ These are the two FDPs applications currently on file with the City and the two construction phases of the MacArthur Transit Village Project that are anticipated to overlap to some extent and occur within the next two years. Consequently the effects of both of these construction phases are considered in this analysis.

mitigation measures in the 2010 BAAQMD CEQA Guidelines (page 2-6). Additionally, the Project EIR quantified the estimated construction emissions based on the phased construction schedule in Table IV.D-6 (EIR p.247). This Table confirms that the Project's unmitigated construction emissions are below the BAAQMD's 2010 CEQA Guidelines threshold's of significance for construction emissions. Consequently, there is no evidence to suggest that the Surgery Center would experience any significant adverse impacts related to dust and diesel emissions from the Project construction. The potential dust and diesel particulate matter emissions from the Project construction will be significantly reduced and controlled through implementation of SCA-AIR-1 and SCA-AIR-2. These conditions of approval protect the Surgery Center.

A health risk assessment (HRA) was conducted to more precisely assess the air quality impacts from construction on the project site to patients and workers at the Surgery Center. Using the detailed Construction Equipment Schedule, dated January 28, 2011, provided by the MacArthur Transit Community Partners (MTCP) and a combination of the California Air Resources Board's URBEMIS 2007 and HARP models, a very detailed HRA was developed. The URBEMIS 2007 model was used to translate the construction details into pollutant emissions rates. These emissions were then assigned locations on the project site corresponding with the construction phasing plan and within those areas, placed closer to the Surgery Center to maximize the predicted impact. The HARP model was then used to combine these emissions and local meteorological conditions into an air dispersion model to predict pollutant concentrations and corresponding health risk levels. It is standard HRA methodology to assess only the outdoor risk levels, since the amount of protection afforded by buildings vary substantially. It is probable that the Surgery Center provides above average protection to patients and workers within, however, this HRA does not attempt to quantify that protection. Thus, this HRA assumes that the exposure occurs for the standard California-recommended 24 hours per day, 7 days per week, 240 days per year.

The primary health concern is the short-term acute affects from the exhaust of the heavy-duty construction equipment operating in close proximity to the Surgery Center. However, there is also the potential for a longer term exposure to the workers at the Surgery Center, and possibly to patients of the Surgery Center. The Surgery Center currently provides ambulatory care, performing outpatient surgeries and nursing care. It does not have inpatient accommodations. However, since this project has no control over how the Surgery Center operates, this HRA also includes the predicted carcinogenic and chronic health risks to a patient staying not only overnight, but doing so for the entire construction period. It is assumed that the Surgery Center workers stay 8 hours per day on average and continue to work at the Surgery Center for the entire construction period. To insure completeness, the health risk levels were determined not only for the patients and workers at the Surgery Center, but also for the homes surrounding the project site. Again, the HRA assumes the doctors, nurses and patients all spend all day outside on the side of the Surgery Center building nearer to the construction activities. Table 1 shows the HRA results.

Risk Category	Carcinogenic Inhalation Health Risk	Chronic Inhalation Health Index	Acute Inhalation Health Index	Threshold Exceeded ?
2-Year Patient Risks	0.24 in 1 million	0.0061	0.040	No
Worker Risks	0.047 in 1 million	0.0061	0.040	No
Residential Risks	0.24 in 1 million	0.0061	0.040	No
BAAQMD Threshold	10 in 1 million	1	1	

Table 1: Inhalation Health Risks from Construction Operations

Source: LSA Associates, Inc., February 2011

The BAAQMD additionally requires that the long-term carcinogenic health risk results have age factors applied to account for the range of age groups in the general population. Table 2 shows the age groups, their adjustment factors, and the adjusted carcinogenic health risk level for someone staying at the Surgery Center for the full construction period 24 hours a day or for residents of the nearby homes.

Risk Group	ASF	Duration	Carcinogenic Inhalation Health Risk
3rd Trimester to age 2			
years	10	2.25/70	0.077 in a million
age 2 years to age 16			
years	3	14/70	0.14 in a million
age 16 to 70 years	1	54/70	0.20 in a million
Adjusted 70 year lifetime	risk		0.41 in a million
BAAQMD Threshold			10 in a million
Threshold Exceeded ?			No

Table 2: 70-Year Carcinogenic Age Group Adjustment

Source: LSA Associates, Inc., February 2011

This HRA completely assessed health risk levels; however, there is no quantitative method to predict fume impacts. Since there is a correlation between pollutant concentrations and the resulting odor, it is logical to conclude that since the HRA shows very low concentrations of pollutants there will not be a odor impact.

CONCLUSIONS

As shown in Tables 1 and 2 for both patients and workers at the Surgery Center, as well as to nearby residents, construction operations would result in a maximum health risk level that is below the BAAQMD's criterion of significance for cancer health effects (10 in 1 million), and for chronic or acute health risks. While the Surgery Center patients may be uniquely sensitive to air pollution, these health risk levels are substantially below the BAAQMD thresholds of significance, making it unlikely that anyone, even uniquely sensitive individuals, would experience a negative health effect.

Historically, the BAAQMD has used the criterion of 10 in 1 million to determine the risk for point sources such as emissions from industrial facilities. This threshold was developed for these kinds of emissions sources that operate continuously for decades. Applying this threshold to a relatively brief event, such as the construction of this project, is very conservative. Additionally, the BAAQMD has documented that the average ambient air in the San Francisco Bay area has pollutant levels such that everyone living there has a carcinogenic health risk of 602 in 1 million.² The increase in health risk to the patients and workers at the Surgery Center is so small that no real difference would be detectable.

² Bay Area Air Quality Management District. 2004. *Toxic Air Contaminant Control Program, Annual Report 2002*. June.

EXXHBIT A

Dust control is a major concern of the BAAQMD for all construction operations. As described on page D-47 of the BAAQMD CEQA Guidelines: "For fugitive dust emissions, the BAAQMD recommends following the current best management practices approach which has been a pragmatic and effective approach to the control of fugitive dust emissions. Studies have demonstrated (Western Regional Air Partnership, U.S.EPA) that the application of best management practices at construction sites have significantly controlled fugitive dust emissions. Individual measures have been shown to reduce fugitive dust by anywhere from 30 percent to more than 90 percent. In the aggregate best management practices will substantially reduce fugitive dust emissions from construction sites. These studies support staff's recommendation that projects implementing construction best management practices will reduce fugitive dust emissions to a less than significant level." This project is committed to follow all best management practices to minimize fugitive dust impacts.

Whether a particular odor is objectionable can be very subjective. Odors rarely have direct health impacts, but they can be very unpleasant and can lead to anger and concern over possible health effects among the public. The current BAAQMD odor impact threshold is five confirmed complaints per year over a three year period. This project will be sensitive to odor complaints and make all efforts to minimize odor impacts.

Attachment: HRA Worksheets and modeling files

HRA Worksheets and Modeling Files

BARTGRG2 VOLUME 564558.236 4186868.277 21.710 22.000 LOCATION STRTV1 VOLUME 564695.209 4187022.782 24.000 VOLUME 564611.907 4186921.223 22.490 VOLUME 564625.190 4186980.147 23.090 24.020 24.000 24.000 24.000 23.870 564601.141 4187041.147 23.630 564585.446 4187043.747 23.440 VOLUME 564632.800 4187009.549 23.600 VOLUME 564618.532 4186950.710 23.000 4186897.289 STARTING TITLEONE MacArthur BART HEALTH RISK ASSESSMENT 1 564679.514 4187026.655 2 564663.360 4187028.711 3 564648.616 4187030.784 564617.260 4187037.732 4187034.742 - Y Coord. ** ERRORFIL P:\MTC1101\Modeling\MacBExh.err File: P:\MTC1101\Modeling\MacBExh.INP ****************************** ***************************** ************************************ ************************************ BARTGRG1 VOLUME 564565.370 564633.397 Lakes Environmental Software Inc. TITLETWO Construction Emissions MODELOPT DFAULT CONC URBAN D - Volume 2 B - Volume 1 Parcel E - Volume 1 Parcel E - Volume 2 D - Volume 1 Source ID - Type - X Coord. Parcel D - Volume ISCST3 Input Produced by: 4 ഹ ୦ ∞ VOLUME ** ISCST3 Control Pathway AERMOD View Ver. 6.7.1 ** ISCST3 Source Pathway Source Location ** 1 PERIOD DESCRSRC Street ER&BH3 ER&BH2 LOCATION STRTV2 Street STRTV3 Street STRTV6 Parcel Street STRTV5 Street Street Street STRTV8 ER&BH4 STRTV4 STRTV7 Street Parcel Date: 1/31/2011 ER&BH1 Parcel OTHER ELEV RUN AVERTIME POLLUTID TERRHGTS RUNORNOT DESCRSRC LOCATION LOCATION LOCATION LOCATION DESCRSRC DESCRSRC LOCATION DESCRSRC LOCATION DESCRSRC LOCATION DESCRSRC LOCATION DESCRSRC DESCRSRC DESCRSRC LOCATION DESCRSRC LOCATION LOCATION LOCATION STARTING DESCRSRC DESCRSRC FINISHED 0 * S * * * * * 00 8 *

EXHIBIT A

LOCATION STRTV10 VOLUME 564609.162 4187024.699 23.450

DESCRSRC

*

Volume treet 5 D DESCRSRC *

- 23.200 10 E 564605.833 4187010.431 Street Volume 11 VOLUME STRTV11 LOCATION DESCRSRC *
- 23.000 4186995.687 STRTV12 VOLUME 564602.028 12 Volume Street LOCATION DESCRSRC *
 - 23.000 23.000 STRTV14 VOLUME 564595.845 4186966.200 4186980.943 STRTV13 VOLUME 564598.699 13 Volume Street LOCATION DESCRSRC LOCATION * *
- 22.910 14 Street Volume LOCATION DESCRSRC * *
 - 22.940 STRTV15 VOLUME 564592.516 4186951.931 Street Volume 15 LOCATION DESCRSRC * *
 - 22.380 STRTV16 VOLUME 564588.236 4186937.187 Street Volume 16 STRTV17 VOLUME 564584.431 4186922.444 LOCATION DESCRSRC * *
 - 23.620 BRTPV1 VOLUME 564547.773 4187094.190 Volume 17 Street LOCATION DESCRSRC * *
- 24.000 BRTPV2 VOLUME 564554.431 4187124.153 BART Plaza - Volume 1 DESCRSRC LOCATION * *
- 24.000 STRTV18 VOLUME 564583.917 4187123.203 BART Plaza - Volume 2 LOCATION DESCRSRC *
- 24.000 4187108.935 Street Volume 18 STRTV19 VOLUME 564580.112 LOCATION DESCRSRC * *
- 24.000 4187094.191 STRTV20 VOLUME 564575.356 Street Volume 19 20 Street Volume LOCATION DESCRSRC DESCRSRC * *
 - 23.880 4187079.923 STRTV21 VOLUME 564571.551 LOCATION * *
- 23.310 STRTV22 VOLUME 564567.271 4187065.655 21 Street Volume DESCRSRC LOCATION
 - 23.030 Street Volume 22 STRTV23 VOLUME 564563.466 4187050.911 DESCRSRC LOCATION * *
- 23.000 Street Volume 23 STRTV24 VOLUME 564559.185 4187036.167 DESCRSRC LOCATION *
- 23.000 STRTV25 VOLUME 564555.856 4187021.899 Street Volume 24 DESCRSRC LOCATION DESCRSRC * *
- 23.000 STRTV26 VOLUME 564552.051 4187007.155 25 Street Volume LOCATION DESCRSRC *
- 22.890 Street Volume 26 STRTV27 VOLUME 564548.722 4186991.936 LOCATION * *
- 22.550 STRTV28 VOLUME 564543.966 4186977.192 Street Volume 27 DESCRSRC LOCATION DESCRSRC *
- 22.130 4186962.448 Street Volume 28 STRTV29 VOLUME 564540.161 Street Volume 29 LOCATION * *
- 22.070 STRTV30 VOLUME 564535.880 4186947.704 DESCRSRC LOCATION *
 - 22.000 STRTV31 VOLUME 564532.076 4186932.960 30 31 Street Volume Street Volume DESCRSRC LOCATION DESCRSRC * *
- 22.000 STRTV32 VOLUME 564527.795 4186917.741 LOCATION DESCRSRC * *
 - 21.830 Street Volume 32 STRTV33 VOLUME 564523.515 4186902.521 LOCATION DESCRSRC *
- 21.380 Street Volume 33 STRTV34 VOLUME 564519.710 4186887.778 Street Volume 34 DESCRSRC LOCATION * *
 - Source Parameters ** * *
 - 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.930 0.930 3.098 3.098 3.098 3.098 3.098 3.098 3.098 3.098 6.744 6.744

 A STRTV2
 1.0
 1.000
 3

 A STRTV3
 1.0
 1.000
 3

 A STRTV4
 1.0
 1.000
 3

 A STRTV5
 1.0
 1.000
 3

 A STRTV4
 1.0
 1.000
 3

 A STRTV5
 1.0
 1.000
 3

 A STRTV5
 1.0
 1.000
 3

 1.0 1.000 SRCPARAM STRTV1 1.0 1.000 1.0 1.000 1.0 1.000 1.0 1.000 STRTV6 ER&BH4 STRTV7 STRTV8 ER&BH1 SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM

0.930

6.744

1.0 1.000

ER&BH3

SRCPARAM

AM ER&BH2 1.0 1.000 6.744 0.930 AM BARTGRG2 1.0 1.000 6.744 0.930 AM BARTGRG1 1.0 1.000 6.744 0.930 AM STRTV11 1.0 1.000 3.098 0.465 AM STRTV12 1.0 1.000 3.098 0.465 AM STRTV12 1.0 1.000 3.098 0.465 AM STRTV12 1.0 1.000 3.098 0.465 AM STRTV17 1.0 1.000 3.098 0.465 AM STRTV22 1.0 1.000 3.098 0.465 BARTGRG2 BARTGRG2 BARTGRG1 BARTGRG1 STRTV10 STRTV11 STRTV12 STRTV13 STRTV14 STRTV15 STRTV15 STRTV16 STRTV16 STRTV16 STRTV18 STRTV18 STRTV2 0 STRTV20 1 STRTV21 2 STRTV21 2 STRTV23 3 STRTV23 5 STRTV23 6 STRTV25 6 STRTV25 7 STRTV25 8 STRTV25 9 STRTV29 8 STRTV29 8 STRTV29 STRTV30 STRTV32 STRTV31 STRTV33 STRTV3 ER&BH4 ER&BH3 ER&BH2 STRTV1 STRTV17 STRTV18 STRTV20 STRTV21 STRTV22 STRTV25 STRTV26 STRTV29 STRTV3 ST STRTV11 STRTV12 STRTV13 STRTV14 STRTV15 STRTV27 STRTV28 STRTV10 STRTV19 STRTV31 STRTV32 STRTV16 STRTV30 BRTPV1 I BRTPV2 I ER&BH1 I ER&BH4 I STRTV23 STRTV24 STRTV33 ER&BH3 ER&BH2 STRTV1 STRTV2 SRCGROUP SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCPARAM SRCGROUP SRCPARAM SRCPARAM

INPUTFIL P:\MTC1101\Modeling\OAK78-83.ASC ANEMHGHT 10 METERS SURFDATA 23230 1978 OAKLAND/WSO_AP UAIRDATA 23230 1978 OAKLAND/WSO_AP 569300.00 4172700.00 24.00 22.225.00 22.24.97 224.97 224.97 225.00 225.20 225.00 225.20 225.00 225.20 225.20 225.20 225.20 225.20 225.20 225.20 225.0 ****************************** ************************************* *************** ************* 4187014.18 4186972.86 4187159.86 4187159.86 4187157.15 4187157.35 4187152.62 4187150.35 4187150.35 4187150.35 4187141.74 4187139.02 4187020.78 4187005.38 4186973.66 4186955.99 4187144.46 4187076.96 4186989.52 4187137.21 4187134.49 4187064.72 4187034.82 4187129.51 4187091.91 4187047.51 ** ISCST3 Meteorology Pathway STRTV34 STRTV34 STRTV4 STRTV4
STRTV5 STRTV5
STRTV5 STRTV5
STRTV6 STRTV6
STRTV6
STRTV7 STRTV7 ** ISCST3 Receptor Pathway 564579.46 564595.32 564611.18 564625.68 564625.68 STRTV8 564662.36 564653.21 564690.85 564652.41 564666.45 564708.13 564722.17 564749.36 564733.95 564731.23 564728.52 564724.89 564721.72 564714.47 564710.85 564681.40 564695.44 564740.30 564737.12 564717.64 ** ISCST3 Output Pathway STARTING RECTABLE ALLAVE 1ST RECTABLE 1 1ST STRTV8 1 DISCCART DISCCART SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP SRCGROUP DISCCART DISCCART DESCRREC STARTING FINISHED FINISHED STARTING DISCCART FINISHED 0 * ME ЛO * * * * RE RE * * * * MБ * * * * * * * * *

EXHIBIT A

Plotfile Path: P:\MTC1101\Modeling\MACBEXH.IS\

Auto-Generated Plotfiles

* *

PLOTFILE 1 BRTPV1 1ST 01H1G001.PLT

1 BARTCRG2 IST 01H1G007.PLT PERIOD BARTGRG2 PE00G007.PLT 1 BARTGRG1 1ST 01H1G008.PLT PERIOD BARTGRG1 PE00G008.PLT PERIOD STRTVI PE00G009.PLT 1 STRTVI0 1ST 01H1G010.PLT PERIOD STRTVI0 PE00G010.PLT 1 STRTV12 1ST 01H1G012.PLT PERIOD STRTV12 PE00G012.PLT 1 STRTV17 1ST 01H1G017.PLT PERIOD STRTV17 PE00G017.PLT PLOTFILE 1 STRTV21 1ST 01H1G022.PLT PLOTFILE PERIOD STRTV21 PE00G022.PLT PLOTFILE PERIOD STRTV23 PE00G024.PLT PLOTFILE 1 STRTV24 1ST 01H1G025.PLT 1 STRTV11 1ST 01H1G011.PLT PERIOD STRTV11 PE00G011.PLT PLOTFILE PERIOD STRTV13 PE00G013.PLT PLOTFILE PERIOD STRTV14 PE00G014.PLT PERIOD STRTV15 PE00G015.PLT PERIOD STRTV16 PE00G016.PLT PERIOD STRTV18 PE00G018.PLT PLOTFILE PERIOD STRTV19 PE00G019.PLT PLOTFILE PERIOD STRTV22 PE00G023.PLT PERIOD STRTV24 PE00G025.PLT PERIOD STRTV25 PE00G026.PLT PERIOD STRTV26 PE00G027.PLT PLOTFILE PERIOD STRTV28 PE00G029.PLT PERIOD STRTV20 PE00G021.PLT PERIOD STRTV27 PE00G028.PLT PERIOD STRTV29 PE00G030.PLT PERIOD STRTV30 PE00G032.PLT PLOTFILE PERIOD STRTV31 PE00G033.PLT PERIOD STRTV3 PE00G031.PLT PERIOD BRTPV2 PE00G002.PLT PERIOD ER&BH3 PE00G005.PLT 1 STRTV13 1ST 01H1G013.PLT 1 STRTV14 1ST 01H1G014.PLT PLOTFILE 1 STRTV15 1ST 01H1G015.PLT 1 STRTV16 1ST 01H1G016.PLT 1 STRTV18 1ST 01H1G018.PLT 1 STRTV19 1ST 01H1G019.PLT PERIOD STRTV2 PE00G020.PLT 1 STRTV20 1ST 01H1G021.PLT 1 STRTV25 1ST 01H1G026.PLT 1 STRTV26 1ST 01H1G027.PLT 1 STRTV27 1ST 01H1G028.PLT 1 STRTV28 1ST 01H1G029.PLT 1 STRTV29 1ST 01H1G030.PLT PERIOD ER&BH1 PE00G003.PLT PERIOD ER&BH4 PE00G004.PLT PERIOD ER&BH2 PE00G006.PLT 1 STRTV22 1ST 01H1G023.PLT 1 STRTV23 1ST 01H1G024.PLT 1 STRTV30 1ST 01H1G032.PLT 1 STRTV31 1ST 01H1G033.PLT PERIOD BRTPV1 PE00G001.PLT PLOTFILE 1 STRTV2 1ST 01H1G020.PLT 1 ER&BH1 1ST 01H1G003.PLT 1 ER&BH3 1ST 01H1G005.PLT 1 STRTV1 1ST 01H1G009.PLT STRTV3 1ST 01H1G031.PLT BRTPV2 1ST 01H1G002.PLT 1 ER&BH4 1ST 01H1G004.PLT 1 ER&BH2 1ST 01H1G006.PLT PLOTFILE PLOTFILE

PLOTFILE 1 STRTV32 1ST 01H1G034.PLT PLOTFILE PERIOD STRTV32 PE00G034.PLT PLOTFILE 1 STRTV33 1ST 01H1G035.PLT PLOTFILE 1 STRTV33 PE00G035.PLT PLOTFILE 1 STRTV34 1ST 01H1G035.PLT PLOTFILE 1 STRTV34 PE00G036.PLT PLOTFILE 1 STRTV4 1ST 01H1G036.PLT PLOTFILE 1 STRTV4 1ST 01H1G037.PLT PLOTFILE 1 STRTV4 1ST 01H1G038.PLT PLOTFILE 1 STRTV5 FE00G039.PLT PLOTFILE 1 STRTV5 1ST 01H1G038.PLT PLOTFILE 1 STRTV5 1ST 01H1G038.PLT PLOTFILE 1 STRTV5 1ST 01H1G038.PLT PLOTFILE 1 STRTV7 1ST 01H1G039.PLT PLOTFILE 1 STRTV7 1ST 01H1G040.PLT PLOTFILE 1 STRTV7 1ST 01H1G040.PLT PLOTFILE 1 STRTV7 1ST 01H1G041.PLT PLOTFILE 1 STRTV8 1ST 01H1G041.PLT PLOTFILE PERIOD STRTV8 PE00G040.PLT ************************* FINISHED

D * *

CoordinateSystemUTM UTM: Universal Transverse Mercator North American Datum 1983

Inc.
Associates,
LSA

				PM10 Exhaust	ROG
2011				0.210069899	0.777930779
	Demolition 03/03/2011-03/31/2011	Motel Demo	BART Garage	0.011815347	0.024744268
	Mass Grading 04/01/2011-05/31/2011	Environmental Remediation	ER&BH	0.031206026	0.063550874
	Mass Grading 05/01/2011-05/31/2011	BART Garage - Earthwork	BART Garage	0.005756416	0.010915693
	Trenching 06/01/2011-06/30/2011	BART Garage - Piles	BART Garage	0.008540256	0.016372634
	Trenching 06/01/2011-08/31/2011	BART Garage - Grade Beams / Pile Caps	BART Garage	0.029798098	0.047941697
	Demolition 07/01/2011-08/31/2011	Frontage Road - Demo & Earthwork	Street Vols 18-34	0.017847907	0.035941638
	Trenching 08/01/2011-09/30/2011	Frontage Road - Utilities	Street Vols 18-34	0.006552109	0.01258851
	Asphalt 09/01/2011-12/31/2011	BART Garage - Vertical Concrete	BART Garage	0.054765691	0.07922191
	Demolition 09/01/2011-09/30/2011	BART Plaza - Demo	BART Plaza	0.006802976	0.013167806
	Asphalt 10/01/2011-10/31/2011	BART Plaza - Concrete	BART Plaza	0.002212237	0.006062875
	Asphalt 10/01/2011-11/30/2011	Frontage Road - Paving & Sidewalks	Street Vols 18-34	0.017414164	0.031185679
	Trenching 10/01/2011-11/30/2011	W. MacArthur - Utilities	Street Vols 18-34	0.006260904	0.012029021
	Coating 11/01/2011-03/31/2012	BART Garage - Exterior Skin	BART Garage	0.000142053	0.399894425
	Fine Grading 11/01/2011-11/30/2011	BRiDGE - Earthwork	ER&BH	0.006486542	0.013681873
	Asphalt 12/01/2011-02/28/2012	BRiDGE - Concrete	ER&BH	0.002151591	0.004280295
	Asphalt 12/01/2011-12/31/2011	W. MacArthur - Concrete	Street Vols 18-34	0.002317581	0.006351583
2012				0.09	1.10
	Asphalt 12/01/2011-02/28/2012	BRiDGE - Concrete	ER&BH	0.004216838	0.00847455
	Coating 11/01/2011-03/31/2012	BART Garage - Exterior Skin	BART Garage	0.000210533	0.885031083
	Demolition 01/01/2012-01/31/2012	BART Plaza - Demo	BART Plaza	0.006742369	0.013505804
	Asphalt 02/01/2012-02/28/2012	BART Plaza - Concrete	BART Plaza	0.002146619	0.006132647
	Building 02/01/2012-03/31/2012	BART Garage - Sitework	BART Garage	0.024589458	0.077750154
	Fine Grading 04/01/2012-05/31/2012	Internal Streets & Village - Earthwork	Street Vols 1-16	0.016886366	0.033507655
	Trenching 09/01/2012-11/30/2012	Internal Streets & Village - Utilties	Street Vols 1-16	0.031723811	0.060486488
	Asphalt 11/01/2012-01/30/2013	Internal Streets & Village - Paving & Sidewa	I Street Vols 1-16	0.005711218	0.01110517
2013				0.00	0.01
	Asphalt 11/01/2012-01/30/2013	Internal & Village - Paving & Sidewalks	Street Vols 1-16	0.003006187	0.00589604
	,	1	tc	otal 0.305303299	1.87982036938142

Printed: 2/11/2011; 2:16 PM

Inc.	
ociates,	
A Asso	
ΓS	

Translating Base PM10 and ROG Emissions Rates to Toxic Compound Emissions Rates

	Number of			I					Annua	Emissions	(lb/year)					
Construction Area	modeling	URBEMIS PM10 tons/vear	URBEMIS ROG tons/vear	Years of Construction	PM10	1,3-butadiene	acetaldehyde	benzene	ethylbenzene	formaldehyde	methanol	mek	naphthalene	styrene	toluene	xylene
BART Garage	2	0.135617852	1.541871863	2	3.875	8.37E-02	3.24	0.882	0.134	6.48	0.0132	0.651	0.0374	0.0256	0.649	0.269
EvRem & BRiDGE	4	0.044060998	0.089987592	2	0.629	2.44E-03	0.0945	0.0257	0.00392	0.189	3.86E-04	0.019	0.00109	7.46E-04	0.0189	0.00785
BART Plaza	2	0.017904201	0.038869131	2	0.512	2.11E-03	0.0817	0.0222	0.00339	0.163	3.33E-04	0.0164	9.44E-04	6.44E-04	0.0164	0.00679
Internal Street	16	0.057327581	0.110995353	2	0.205	7.53E-04	0.0291	0.00793	0.00121	0.0583	1.19E-04	0.00586	3.37E-04	2.30E-04	0.00584	0.00242
Frontage Rd	17	0.050392666	0.09809643	2	0.169	6.26E-04	0.0242	0.0066	0.00101	0.0485	9.89E-05	0.00487	2.80E-04	1.91E-04	0.00486	0.00201
	41	0.305303299	1.879820369													
									Hourl	y Emissions	(lb/hr)					
		Construction	Construction	I	PM10	1,3-butadiene	acetaldehyde	benzene	ethylbenzene	formaldehyde	methanol	mek	naphthalene	styrene	toluene	xylene
BART Garage		days/year	hours/day	I	1.94E-03	4.19E-05	1.62E-03	4.41E-04	6.70E-05	3.24E-03	6.60E-06	3.26E-04	1.87E-05	1.28E-05	3.25E-04 1	.35E-04
EvRem & BRiDGE		250	8		3.15E-04	1.22E-06	4.73E-05	1.29E-05	1.96E-06	9.45E-05	1.93E-07	9.50E-06	5.45E-07	3.73E-07	9.45E-06 3	.93E-06
BART Plaza					2.56E-04	1.06E-06	4.09E-05	1.11E-05	1.70E-06	8.15E-05	1.67E-07	8.20E-06	4.72E-07	3.22E-07	8.20E-06 3	.40E-06
Internal Street					1.02E-04	3.77E-07	1.46E-05	3.97E-06	6.05E-07	2.92E-05	5.95E-08	2.93E-06	1.69E-07	1.15E-07	2.92E-06 1	.21E-06
Frontage Rd					8.47E-05	3.13E-07	1.21E-05	3.30E-06	5.05E-07	2.43E-05	4.95E-08	2.44E-06	1.40E-07	9.55E-08	2.43E-06 1	.01E-06
		Speciation P	rofile #818													
		1,3-butadiene	0.0019													
		acetaldehyde	0.07353													
		benzene	0.02001													
		ethylbenzene	0.00305													
		formaldehyde	0.14714													
		methanol	0.0003													
		mek	0.01477													
		naphthalene	0.00085													
		styrene	0.00058													
		toluene	0.01473													
		xylene	0.00611													
		From the ARB web	site: Speciation P	rofiles Used in A	ARB Modeli	bu										
		http://www.arb.ca.c	gov/ei/speciate/dnl	dopt.htm#specp	<u>prof</u>											
		downloaded 10/14/	/2010													

This file: P:\MTC1101\Modeling\Rep_Can_70yr_Inh_AllRec_AllSrc_AllCh_ByRec_Site.txt

Created by HARP Version 1.4d Build 23.09.07 Uses ISC Version 99155 Uses BPIP (Dated: 04112) Creation date: 2/1/2011 1:11:46 PM

EXCEPTION REPORT (there have been no changes or exceptions)

INPUT FILES: Source-Receptor file: P:\MTC1101\Modeling\MACBEXH.SRC Averaging period adjustment factors file: not applicable Site parameters file: P:\MTC1101\Modeling\project.sit Emission rates file: EmRates.ems

Coordinate system: UTM NAD83

Screening mode is OFF

70 year (adult resident) 80th Percentile Point Estimate (inhalation pathway only) Cancer Risk A11 A11 A11 Exposure duration: Analysis method: Health effect: Chemicals(s): Receptor(s): Sources(s):

SITE PARAMETERS

Inhalation only. Site parameters not applicable.

CHEMI	CAL CROSS-R	EFERENCE TABLE 2	AND BACKGROUND CONCE	NTRATIONS				
CHEM	CAS	ABBREVIATION	POLLUTANT NAME				BACKGROUND (ug/	'/m^3)
0001	9901	DieselExhPM	Diesel engine exha	ust, particulate mat	tter (Diesel PM)		0.000E+00	
0002	106990	1,3-Butadiene	1,3-Butadiene				0.000E+00	
0003	75070	Acetaldehyde	Acetaldehyde				0.000E+00	
0004	71432	Benzene	Benzene				0.000E+00	
0005	100414	Ethyl Benzene	Ethyl benzene				0.000E+00	
0006	50000	Formaldehyde	Formaldehyde				0.000E+00	
0007	67561	Methanol	Methanol				0.000E+00	
0008	78933	MEK	Methyl ethyl ketor	<pre>le {2-Butanone}</pre>			0.000E+00	
6000	91203	Naphthalene	Naphthalene				0.000E+00	
0010	100425	Styrene	Styrene				0.000E+00	
0011	108883	Toluene	Toluene				0.000E+00	
0012	1330207	Xylenes	Xylenes (mixed)				0.000E+00	
CHEMI	CAL HEALTH	VALUES						
CHEM	CAS	ABBREVIATION	CancerPF(Inh)	CancerPF (Oral)	ChronicREL(Inh)	ChronicREL (Oral)	AcuteREL	
			(mg/kg-d)^-1	(mg/kg-d)^-1	ug/m^3	mg/kg-d	ug/m^3	
0001	9901	DieselExhPM	1.10E+00	*	5.00E+00	*	*	
0002	106990	1,3-Butadiene	6.00E-01	*	2.00E+01	*	*	
0003	75070	Acetaldehyde	1.00E-02	*	1.40E+02	*	4.70E+02	
0004	71432	Benzene	1.00E-01	*	6.00E+01	*	1.30E+03	
0005	100414	Ethyl Benzene	8.70E-03	*	2.00E+03	*	*	
0006	50000	Formaldehyde	2.10E-02	*	9.00E+00	*	5.50E+01	
0007	67561	Methanol	*	*	4.00E+03	*	2.80E+04	
0008	78933	MEK	*	*	*	*	1.30E+04	
6000	91203	Naphthalene	1.20E-01	*	9.00E+00	*	*	
0010	100425	Styrene	*	*	9.00E+02	*	2.10E+04	
0011	108883	Toluene	*	*	3.00E+02	*	3.70E+04	
0012	1330207	Xvlenes	*	*	7.005+02	*	2 20F+04	

EMISSIONS DATA SOURCE: Emission rates loaded from file: P:/MTC1101/Modeling/ExEmRates2.ems

EMISSION RATES HAVE BEEN MANUALLY EDITED BY USER CHEMICALS ADDED OR DELETED: ADDED DieselExhPM ADDED 1,3-Butadiene 9901 ADDED Acetaldehyde 106990 ADDED Barzene 75070 ADDED Berzene 71432 ADDED Ethyl Benzene 71432 ADDED Ethyl Benzene 71432 ADDED Ethyl Benzene 71432 ADDED Kethanol 50000 ADDED Kethanol 50000 ADDED Methanol 50000 ADDED Methanol 50000 ADDED Naphthalene 78933 ADDED Naphthalene 100425 ADDED Styrene 100425 ADDED Toluene 100425 ADDED Xylenes 108883

1.15e-7 2.92e-6 1.21e-6 1.15e-7 2.92e-6 1.21e-6 4.16e-5 3.97e-6 5.95e-8 2.93e-6 1.69e-7 2.92e-5 2.93e-6 3.97e-6 1.21e-6 2.92e-5 6.05e-7 2.92e-5 5.95e-8 1.02e-4 4.16e-5 6.05e-7 2.92e-6 4.16e-5 3.97e-6 5.95e-8 2.93e-6 MAX (lbs/hr) 1.02e-4 3.77e-7 MAX (lbs/hr) 3.77e-7 1.69e-7 1.15e-7 (lbs/hr) 1.02e-4 3.77e-7 6.05e-7 1.69e-7 MAX NAME=STRTV1 STACK 1 EMS (lbs/yr) NAME=STRTV2 STACK 1 EMS (lbs/yr) NAME=STRTV3 STACK 1 EMS (lbs/yr) 0.205 0.00586 AVRG (lbs/yr) 0.205 0.00586 AVRG (lbs/yr) 0.205 7.53e-4 7.93e-3 0.0583 1.19e-4 3.37e-4 2.30e-4 0.00584 0.00242 7.53e-4 0.0291 7.93e-3 0.0583 .19e-4 0.00586 0.00242 AVRG (lbs/yr) 7.53e-4 7.93e-3 0.0583 1.19e-4 0.00584 0.00242 0.0291 3.37e-4 0.00584 0.0291 .37e-4 0.00121 0.00121 2.30e-4 0.00121 2.30e-BG (ug/m^3) BG (ug/m^3) BG (ug/m^3) STK=1 STK=1STK=1MULTIPLIER MULTIPLIER MULTIPLIER PRO=* PRO=* PRO=* DEV=* DEV = *DEV = *1, 3-Butadiene Ethyl Benzene Formaldehyde Ethyl Benzene 1, 3-Butadiene 1,3-Butadiene Ethyl Benzene EMISSIONS FOR FACILITY FAC=1 Acetaldehyde Formaldehyde EMISSIONS FOR FACILITY FAC=1 Acetaldehyde EMISSIONS FOR FACILITY FAC=1 Acetaldehyde Formaldehyde DieselExhPM DieselExhPM DieselExhPM Naphthalene Naphthalene Naphthalene Methanol Methanol Methanol Benzene Styrene Ioluene Benzene Styrene Xylenes Styrene **Toluene** Xylenes Benzene **Toluene** Xylenes ABBREV ABBREV ABBREV MEK MEK MEK SOURCE MULTIPLIER=1 SOURCE MULTIPLIER=1 SOURCE MULTIPLIER=1 100425 108883 1330207 330207 .330207 75070 71432 100414 0042508883 066901 100414 50000 L00425 L08883 .06990 00414 06990 50000 67561 8933 1203 5070 1432 0000 67561 78933 91203 75070 1432 8933 1203 67561 9901 9901 9901 CAS CAS CAS

EXHIBIT A

NAME=STRTV4 STACK 1 EMS (lbs/yr)

STK=1

PRO=*

DEV = *

EMISSIONS FOR FACILITY FAC=1

\mathbf{O}	
⊢	
Ш	
Ξ	
\times	
ш	

AX (lbs/hr) 1.02e-4 3.77e-7 4.16e-5 3.97e-6 6.05e-7 5.95e-8 2.92e-6 1.69e-7 1.15e-7 1.15e-7 1.21e-6	<pre>'Yr) Ax (lbs/hr) Ax (lbs/hr) 1.02e-4 3.77e-7 4.16e-5 3.97e-6 6.05e-7 2.95e-7 2.95e-6 1.169e-7 1.15e-6 1.15e-6 1.21e-6 1.21e-6</pre>	'Yr) IAX (lbs/hr) 1.02e-4 3.77e-7 4.16e-5 3.97e-6 6.05e-7 2.92e-5 5.92e-6 1.69e-7 1.15e-7 1.15e-7 1.29e-7 1.25e-6	'Yr) fAX (lbs/hr) 1.02e-4 3.77e-7 4.16e-5 5.95e-7 5.95e-7 2.95e-7 1.69e-7 1.69e-7 1.15e-7 1.292e-6 1.292e-6 1.21e-6	'Yr)
AVRG (lbs/yr) M 7.532-4 0.205 0.205 7.932-4 0.00121 0.00583 1.195-4 0.00584 3.375-4 2.306-4 0.00584 0.00242	STACK 1 EMS (lbs/ AVRG (lbs/yr) M 0.205 7.53e-4 0.0291 7.53e-3 0.00121 0.00121 0.00121 0.00586 3.37e-4 0.00586 3.37e-4 0.00586 0.00584	<pre>STACK 1 EMS (lbs/ AVRG (lbs/yr) M 0.205 7.53e-44 0.0291 7.93e-4 0.00121 0.00121 0.00586 3.37e-4 0.00586 3.37e-4 0.00586 0.00584 0.00584</pre>	<pre>STACK 1 EMS (lbs/ AVRG (lbs/yr) M 0.205 7.53e-4 0.0291 7.53e-4 0.0291 7.93e-3 0.00121 0.0121 0.00586 3.37e-4 0.00586 3.37e-4 0.00586</pre>	STACK 1 EMS (lbs/
BG (ug/m^3)	NAME=STRTV5 BG (ug/m^3)	NAME=STRTV6 BG (ug/m^3)	NAME=STRTV7 BG (ug/m^3)	NAME=STRTV8
MULTI PLIER 11 11 11 11 11 11 11 11 11	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 11 11 11 11 11 11 11 11 11 11 11 11 11	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1
	→ DEV=*	*= \DEV=*	DEV=*	DEV=*
TIPLIER=1 ABBREV DieselExhPM DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1 TIPLIER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1 TIPLIER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1 TIPLIER=1 ABBREV DieselExhPM DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1 TIPLIER=1
SOURCE MUL1 CAS CAS CAS T06990 75070 71432 100414 67561 67561 67561 67561 100425 1108883 1100425 1108883 1100883 1100883	EMISSIONS F SOURCE MULJ CAS 9901 106990 106990 106990 106414 67561 71432 104414 67561 78933 91203 91203 100425 100425 100425 100425 100425 100883 100883	EMISSIONS F SOURCE MULJ CAS 9901 106990 75070 75070 71432 100414 5761 67561 67561 67561 78933 91203 108883 108883 1332207	EMISSIONS F SOURCE MULT CAS 9901 106990 106990 71537 106414 106414 67561 71893 91203 91203 1108883 1130207	EMISSIONS E

C	
\vdash	
Ξ	
Ξ	
Ж	

(llbs/hr) 1.02e-4 3.77e-7 4.16e-5 6.05e-6 5.92e-5 5.92e-6 5.92e-6 5.93e-6 1.69e-7 1.15e-7 2.92e-6 1.21e-6 1.21e-6	(1bs/hr) 3.15e-4 4.73e-5 1.22e-6 4.73e-5 1.296-6 9.966-6 9.93e-7 9.50e-6 5.456-7 3.72e-7 3.72e-7 3.93e-6	(lbs/hr) 3.15e-4 1.22e-6 1.22e-6 1.22e-6 9.45e-5 9.45e-7 9.45e-7 3.72e-7 9.45e-7 3.72e-7 3.93e-6 3.93e-6 3.93e-6	(1bs/hr) 3.15e-4 1.22e-6 4.73e-5 1.296-5 9.96e-6 9.93e-7 9.50e-6 5.45e-7 3.72e-7 3.72e-7 3.93e-6	(lbs/hr)
MAX	lbs/yr) MAX	lbs/yr) MAX	lbs/yr) MAX	lbs/yr) MAX
(lbs/Yr) 0.205 7.53e-4 0.0291 7.93e-3 0.00586 3.37e-4 1.19e-4 0.00586 3.37e-4 0.00586 0.00586 0.00584 0.00584	K 1 EMS ((lbs/yr) 2.44e-3 0.0945 0.00392 3.86e-4 3.86e-4 0.0109 7.46e-4 0.0109 0.00109 0.00189	<pre>K 1 EMS (</pre>	<pre>K 1 EMS (lbs/yr) (lbs/yr) 2.44e-3 0.00455 0.0039257 0.01392 3.86e-4 3.86e-4 0.0109 7.46e-4 0.0109 0.0109</pre>	K 1 EMS ((lbs/yr)
AVRG	1 STAC AVRG	4 STAC AVRG	3 STAC AVRG	2 STAC
BG (ug/m^3)	NAME=ER&BH BG (ug/m^3)	NAME=ER&BH BG (ug/m^3)	NAME=ER&BH BG (ug/m^3)	NAME=ER&BH BG (ug/m^3)
MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER
	DEV=*	DEV=*	DEV=*	DEV=*
ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	<pre>% FACILITY FAC=1 %LER=1 %DieselExhPM DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes Xylenes</pre>	<pre>% FACILITY FAC=1 %LIER=1 ABBREV ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Formaldehyde Benzene Ethyl Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes</pre>	<pre>% FACILITY FAC=1 % FACILITY FAC=1 % DieselExhPM 1,3-Butadiene % Acetaldehyde Benzene Fethyl Benzene Fethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes Xylenes</pre>	R FACILITY FAC=1 PLIER=1 ABBREV
CAS 9901 150990 71432 71432 5000414 67561 78933 100425 108883 103207 1330207	EMISSIONS FOF SOURCE MULTIE CAS 9901 106990 75070 71432 106414 67561 67561 78933 91203 110425 1108883 1108883 11332207	EMISSIONS FOF SOURCE MULTIE CAS 9901 106990 106990 71432 100414 50000 67561 71432 100414 50000 67561 71833 71203 71203 100425 108883 108883 108883	EMISSIONS FOF SOURCE MULTHI CAS 9901 106990 75070 71432 106414 67561 78933 91203 91203 110425 1108883 11332207	EMISSIONS FOF SOURCE MULTIF CAS

C	
⊢	
Ξ	
Ĥ	
Ш	

 3.156 1.226 4.726 1.226 1.236 1.236 1.256 1.256 1.556 	(lbs/yr)	MAX (lbs/hr) 1.94e-53 4.19e-53 1.62e-3 6.70e-56 6.70e-5 3.26e-6 3.26e-6 1.28e-5 1.28e-5 1.35e-4	(lbs/yr)		MAX (lbs/hr) 1.94e-3 1.94e-3 1.94e-3 1.1.94e-5 6.70e-5 6.70e-5 6.70e-5 1.28e-6 1.28e-5 1.35e-4 1.35e-4	lbs/yr)	MAX (lbs/hr) 1.02e-44 3.77e-7 4.16e-5 3.97e-6 6.05e-7 5.95e-8 5.95e-8 1.69e-7 1.15e-7 1.21e-6	lbs/yr)	MAX (lbs/hr) 1.02e-4
0.629 2.446-3 0.0945 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0199 0.0119 0.01189 0.0189	RG2 STACK 1 EMS	AVRG (lbs/yr) 3.875 8.37e-2 3.24 0.882 0.134 6.48 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0256	RG1 STACK 1 EMS		AVRG (lbs/yr) 3.875 3.875 3.24 0.837e-2 0.134 0.134 0.132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0256 0.0256	10 STACK 1 EMS (AVRG (lbs/yr) 0.205 7.53e-4 0.0291 7.93e-3 0.00121 0.00583 1.196-4 0.00584 0.00584 0.00584	11 STACK 1 EMS (AVRG (lbs/yr) 0.205
	NAME=BARTG	BG (ug/m^3)	NAME=BARTG		BG (ug/m^3)	NAME=STRTV	BG (ug/m^3)	NAME=STRTV	BG (ug/m^3)
	PRO=* STK=1	MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1		MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1	MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1	MULTIPLIER 1
	DEV=*		DEV=*			DEV=*		DEV=*	
DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	R FACILITY FAC=1	PLIER=1 ABBREV DiseEtXhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	R FACILITY FAC=1 Ditep=1	PLIER=1	ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	R FACILITY FAC=1	ABBREV ABBREV DisesExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	R FACILITY FAC=1	PLIER=1 ABBREV DieselExhPM
9901 106990 75070 71432 100414 67561 78933 91203 91203 108883 108883 1330207	EMISSIONS FOR	SOURCE MULTI. CAS CAS 106990 75070 71432 71432 71432 106114 55070 67561 78561 78563 10883 108883 108883 1330207	EMISSIONS FOI	SOURCE MULTI	CAS 9901 75070 75070 71432 100414 67561 78933 78933 100425 108883 1330207	EMISSIONS FO	SCORCE MULTI. CAS C901 106990 71432 100414 57000 67561 78933 91203 108883 108883 1330207	EMISSIONS FO	SOURCE MULTI. CAS 9901

C	
⊢	
B	
Ĥ	
Х Ш	

 3.7766 4.1766 5.9266 6.0567 6.0566 7.9266 1.1566 1.2566 1.2126 1.2126	(lbs/yr) MAX (lbs/hr) 1.02e-4 1.02e-4 3.77e-7 3.77e-7 3.97e-6 6.05e-7 5.95e-8 5.95e-8 5.92e-6 1.69e-7 1.169e-7 1.21e-6	(lbs/yr) MAX (lbs/hr) 1.02e-4 3.77e-7 4.16e-5 3.97e-6 6.05e-7 2.93e-6 1.69e-7 1.15e-7 1.21e-6 1.21e-6	(lbs/yr) MAX (lbs/hr) 1.02e-4 3.77e-7 3.97e-6 5.95e-7 6.05e-7 2.95e-6 5.95e-6 1.15e-7 1.15e-7 1.21e-6	(lbs/yr) MAX (lbs/hr) 1.02e-4 3.77e-7
7.53e-4 0.53e-4 7.93e-3 0.00121 0.0583 1.0583 3.37e-4 2.37e-4 0.00584 0.00584	712 STACK 1 EMS AVRG (lbs/yr) 0.205 7.53e-4 0.0291 7.93e-3 1.19e-4 1.19e-4 1.19e-4 0.00586 3.37e-4 2.30e-4 0.00584	/13 STACK 1 EMS AVRG (1bs/yr) 0.205 7.53e-4 0.0291 7.93e-3 0.00121 0.00121 0.00121 1.19e-4 2.30e-4 2.30e-4 0.00584 0.00584	714 STACK 1 EMS AVRG (1bs/yr) 0.205 7.53e-4 0.0291 7.93e-3 0.00121 0.00121 0.00583 1.105e-4 2.30e-4 0.00584 0.00584	/15 STACK 1 EMS AVRG (lbs/yr) 7.53e-4
	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)
	PRO=* STK=1 MULTIPLIER 11 11 11 11 11 11 11 11 11 11 11 11 11	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1
	DEV=*	DEV=*	+ * D € √	DEV=*
1, 3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV DieselExhPM 1, 3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 JIER=1 ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Styrene Yoluene Xylenes	FACILITY FAC=1 JIER=1 ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Acetaldehyde Fthyl Benzene Formaldehyde Methanol ME Methanol ME Naphthalene Styrene Styrene Yoluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV DieselExhPM 1,3-Butadiene
106990 75070 71432 100414 50000 67561 67561 17893 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 716970 71432 100414 50000 67561 718933 100425 100425 100425 100883 100883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070 71432 100414 50000 67561 78933 91203 91203 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070 71432 100414 50000 67561 78933 91203 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990

C	
⊢	
B	
Ĥ	
Х Ш	

4.16e-5 3.97e-5 6.05e-7 5.92e-6 5.93e-6 1.69e-7 1.15e-7 1.15e-7 1.21e-6	<pre>(lbs/yr) MAX (lbs/hr) 1.02e-4 1.02e-4 3.77e-7 4.16e-5 3.95e-6 6.05e-7 2.92e-6 1.69e-7 1.169e-7 1.21e-6 1.212e-6</pre>	<pre>(lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 1.02e-4 3.77e-7 4.16e-5 3.97e-6 6.05e-7 2.93e-6 1.69e-7 1.15e-7 2.92e-6 1.69e-7 1.15e-7 2.92e-6 1.21e-6</pre>	.bs/yr) MAX (lbs/hr) 2.56e-4 1.06e-6 4.09e-5 1.11e-5 1.170e-6 8.15e-7 8.26e-6 4.72e-7 3.22e-7 3.40e-6 3.40e-6	.bs/yr) MAX (lbs/hr) 2.56e-4 1.06e-6 4.09e-5
0.0291 7.93e-3 0.00121 0.0583 1.19e-4 0.00586 3.37e-4 2.30e-4 0.00584	16 STACK 1 EMS (AVRG (lbs/yr) 0.205 7.53e-4 7.53e-4 0.0291 7.93e-4 0.00583 1.19e-4 0.00586 3.37e-4 2.39e-4 0.00584 0.00584	17 STACK 1 EMS (AVRG (Lbs/yr) 0.205 7.53e-4 0.0291 7.93e-3 0.00121 0.00121 0.00121 0.00121 0.00584 2.30e-4 2.30e-4 0.00584	1 STACK 1 EMS (1 AVRG (1bs/yr) 0.512 2.11e-3 0.0817 0.0222 0.00339 0.0164 9.44e-4 6.44e-4 6.44e-4 0.0164	2 STACK 1 EMS (1 AVRG (1bs/yr) 0.512 2.11e-3 0.0817
	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=BRTPV BG (ug/m^3)	NAME=BRT₽V BG (ug/m^3)
	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1
	DEV=*	DEV= ∗	DEV= *	DEV=*
Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV ABBREV DisselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV ABBREV DieselExhPM 1, 3-Butadiene Acetaldehyde Benzene Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV Diese1ExhPM 1, 3-Butadiene Acetaldehyde
75070 71432 50001 67561 78933 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 71632 71432 100414 50000 67561 71893 78933 100425 108883 108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070 71432 100414 5000 67561 78933 91203 91203 91203 1100425 108833 1100425 1108883 11330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070 71432 71432 71432 71432 710414 50000 67561 78933 91203 91203 91203 1100425 110883 1108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070

C	
⊢	
B	
Ĥ	
Х Ш	

1.11e-5 1.70e-6 8.15e-5 1.67e-7 8.20e-6 3.22e-7 3.22e-7 3.40e-6 3.40e-6	(lbs/yr) MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 2.43e-5 1.40e-7 9.55e-8 2.43e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	(lbs/yr) MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	(lbs/yr) MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	(lbs/yr) MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6
0.0222 0.00339 0.1633 0.164 3.336-4 9.446-4 6.446-4 0.0164 0.0164	<pre>18 STACK 1 EMS AVRG (lbs/yr) 6.26e-4 0.00562 0.00101 0.0485 9.89e-5 0.00487 2.80e-4 1.91e-4 1.91e-4 0.00486 0.00486 0.00486 0.00201</pre>	<pre>19 STACK 1 EMS AVRG (lbs/yr) 0.169 6.26e-4 0.00161 0.00101 0.00187 0.00187 2.80e-4 1.91e-4 1.91e-4 0.00487</pre>	20 STACK 1 EMS AVRG (lbs/yr) 0.169 6.26e-4 0.00166 0.00101 0.00101 0.00187 2.80e-4 1.91e-4 1.91e-4 0.002485 0.00487 0.00487 0.00487	21 STACK 1 EMS AVRG (1bs/yr) 0.169 6.26e-4 0.0242 0.0066
	NAMB=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)
	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1
	DEV=*	* 口氏V=	>> DEV=*	DEV=*
Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV ABBREV DieselExhPM DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Stylenes Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV DiesslExhPM 1, 3-Butadiene Acetaldehyde Benzene
71432 100414 50000 67561 78933 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIP CAS CAS 9901 106990 1106990 71432 106414 50000 67561 71432 100414 71893 718933 100425 1008883 1008883 11330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070 71432 100414 50001 67561 78933 91203 91203 91203 1100425 108833 1100425 1100425 11332207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 71432 71432 71432 71432 71432 71432 71432 71432 71432 710693 7100414 50000 67561 78933 91203 91203 91203 1100425 1100425 1100425 1100425 1100425 1100425 11330207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 75070 71432

C	
⊢	
B	
Ĥ	
Ш	

5.058 2.438 4.958 2.448 1.448 9.558 9.558 1.448 1.408	<pre>lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.13e-7 3.30e-6 5.05e-7 2.43e-6 1.44e-6 1.44e-6 1.01e-6 1.01e-6</pre>	<pre>lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.13e-7 3.30e-65 5.05e-7 5.05e-7 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.040e-7 1.040e-7</pre>	<pre>lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.13e-7 3.30e-6 5.05e-7 2.43e-5 1.44e-7 9.55e-8 2.43e-6 1.01e-6 1.01e-6</pre>	lbs/yr) MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7
0.00101 0.0485 9.896-5 0.00487 2.806-4 1.916-4 0.00486	22 STACK 1 EMS (AVRG (lbs/yr) 0.169 0.266-4 0.00101 0.0485 0.00485 0.00487 0.0487 0.0487 0.0487 0.0487 0.0487 0.00487 0.00486 0.00486	23 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.26e-4 0.0242 0.00487 0.00487 2.80e-4 1.91e-4 1.91e-4 0.002016	24 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.26e-4 0.00666 0.00101 0.00485 9.89e-5 9.89e-5 9.80e-4 1.91e-4 1.91e-4 0.00486 0.00486	25 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.26e-4 0.0242 0.0066
	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)	NAME=STRTV BG (ug/m^3)
	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1
	DEV=*	* 口氏V=	DEV=*	DEV=*
Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	LIER=1 JIER=1 ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Ethyl Benzene Formaldehyde MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 IER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xvlenes	FACILITY FAC=1 JER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 JIER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene
100414 50000 67561 78933 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIPI CAS CAS 0901 106990 71670 71432 100414 67561 67561 718933 718933 718933 102425 102883 102883 1330207	EMISSIONS FOR SOURCE MULTIPI CAS 9901 106990 75070 710432 714432 714432 714432 71933 912000000000000000000000000000000000000	EMISSIONS FOR SOURCE MULTIPI CAS CAS (106990 75070 71432 100414 67561 67561 67561 67561 67561 100425 100425 108883 100883 100825 108883	EMISSIONS FOR SOURCE MULTIPI CAS 9901 106990 75070 71432 100414

C	
⊢	
Ξ	
Ĥ	
Ш	

2.43e-5 4.95e-8 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	<pre>lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.13e-7 3.30e-6 5.05e-7 5.05e-7 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.001e-6</pre>	<pre>lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.13e-7 3.30e-6 5.05e-7 2.43e-5 1.43e-6 1.41e-6 1.41e-6 1.43e-6 1.43e-6 1.31e-6 1.01e-6</pre>	<pre>lbs/yr) MAX (lbs/hr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.30e-6 5.05e-7 5.05e-7 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.001e-6</pre>	<pre>lbs/yr) MAX (lbs/hr) 8.48e-5 3.13e-7 3.30e-6 5.05e-7 2.43e-5</pre>
0.0485 9.896-5 0.00487 2.806-4 1.916-4 0.00486 0.00201	V26 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.26e-4 0.0242 0.00485 9.896-5 9.896-5 9.896-5 1.916-4 1.916-4 1.916-4 0.00486 0.00486	V27 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.266-4 0.00101 0.00485 9.896-5 0.00487 2.806-4 1.916-4 1.916-4 1.916-4 0.00486 0.00201	V28 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.26e-4 0.00161 0.00161 0.00165 9.89645 9.89645 9.89645 9.806-4 1.916-4 1.916-4 0.00201	V29 STACK 1 EMS (AVRG (lbs/yr) 0.169 6.26e-4 0.00262 0.00101 0.0485
	NAME=STRT BG (ug/m^3)	NAME=STRT BG (ug/m^3)	NAME=STRT BG (ug/m^3)	NAME=STRT BG (ug/m^3)
	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1 MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	DEV=*	ЪБV=*	DEV= *	DEV=*
Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	EACLLITY FAC=1 LIER=1 ABBREV DieselExhPM 1,3-Butadiene Acceldehyde Benzene Ethyl Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FACILITY FAC=1 LIER=1 ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Styrene Yylenes	FACILITY FAC=1 LIER=1 ABBREV DieselExhPM 1, 3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde
50000 67561 78933 91203 100425 108883 1330207	EMISSIONS FOR SOURCE MULTIP' CAS 9901 106990 75070 71432 106414 67561 67561 78933 91203 91203 108883 108883 1330207	EMISSIONS FOR SOURCE MULTIP: CAS 9901 106990 71632 106990 71432 10693 50000 67561 78933 100414 7893 102425 102425 102883 1330207	EMISSIONS FOR SOURCE MULTIP: CAS 9901 106990 75070 71432 100414 67561 78933 91203 91203 1100425 10883 1130207	EMISSIONS FOR SOURCE MULTIP CAS 9901 106990 1106990 71432 100414 50000

C
⊢
Ξ
Ĥ
Ш

4.95e-8 2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	(lbs/yr)	MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 2.43e-6 1.40e-7 9.55e-8 2.43e-6 1.40e-7 1.40e-7 1.40e-7 1.01e-6	(lbs/yr)	MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 2.43e-6 4.95e-8 2.44e-7 9.55e-8 2.43e-6 1.40e-7 9.55e-8 1.01e-6	(lbs/yr)	MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 5.43e-5 4.95e-8 2.43e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	(lbs/yr)	MAX (lbs/hr) 8.48e-5 3.13e-7 1.21e-5 3.30e-6 5.05e-7 2.43e-5 4.95e-8
9.89e-5 0.00487 2.80e-4 1.91e-4 0.00486 0.00486	30 STACK 1 EMS	AVRG (1bs/yr) 0.169 6.266-44 0.0242 0.0066 0.01485 0.01485 0.01485 9.896-4 1.916-4 1.916-4 0.00486 0.00486	31 STACK 1 EMS	AVRG (lbs/yr) 0.169 0.0242 0.0066 0.01485 0.01485 0.01485 9.89e-4 1.91e-4 1.91e-4 1.91e-4 0.00486 0.00486	32 STACK 1 EMS	AVRG (lbs/yr) 0.145 0.26e-45 6.26e-45 0.0066 0.00101 0.00101 0.00185 9.89e-45 0.001486 0.00486 0.00486	33 STACK 1 EMS	AVRG (lbs/yr) 0.169 6.26e-4 0.0242 0.0066 0.00101 0.0485 9.89e-5
	NAME=STRTV	BG (ug/m^3)	NAME=STRTV	BG (ug/m^3)	NAME=STRTV	BG (ug/m^3)	NAME=STRTV	BG (ug/m^3)
	PRO=* STK=1	MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1	MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1	MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRO=* STK=1	MULTIPLIER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	DEV=*		DEV=*		DEV=*		DEV=*	
Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1	TIFLLERE1 ABBREV ABBREV DisesExhPM 1,3-Butadiene Acetaldehyde Benzene Acetaldehyde Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1 mtdited-1	ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1	TIFLLERE1 ABBREV DisesEExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol MEK Naphthalene Styrene Toluene Xylenes	FOR FACILITY FAC=1 TTD1.TF,R=1	ABBREV ABBREV DieselExhPM 1,3-Butadiene Acetaldehyde Benzene Ethyl Benzene Formaldehyde Methanol
57561 78933 91203 100425 108883 1330207	SMOISSIME	SACOURCE MUL SAS 24S 106990 75070 71432 500014 57561 5756 5756	SMISSIONS	2000,000,000,000,000,000,000,000,000,00	SNOISSIME	5000KCE MUL 2AS 2AS 106990 75070 71432 71432 71432 71432 71432 71432 71233 312033 31203 100425 108883 1330207	EMISSIONS	285 9901 106990 75070 71432 100414 50000 57561

C
⊢
Ξ
Ĥ
Ш

2.44e-6 1.40e-7 9.55e-8 2.43e-6 1.01e-6	bs/yr)	MAX (lbs/hr) 8.48e-5	3.13e-7	1.21e-5	3.30e-6	5.05e-7	2.43e-5	4.95e-8	2.44e-6	1.40e-7	9.55e-8	2.43e-6	1.01e-6
0.00487 2.80e-4 1.91e-4 0.00486 0.00201	4 STACK 1 EMS (1	AVRG (lbs/yr) 0.169	6.26e-4	0.0242	0.0066	0.00101	0.0485	9.89e-5	0.00487	2.80e-4	1.91e-4	0.00486	0.00201
	NAME=STRTV3	BG (ug/m^3)											
	PRO=* STK=1	MULTIPLIER 1				1							1
	DEV=*												
MEK Naphthalene Styrene Toluene Xylenes	OR FACILITY FAC=1 IPLIER=1	ABBREV DieselExhPM	1,3-Butadiene	Acetaldehyde	Benzene	Ethyl Benzene	Formaldehyde	Methanol	MEK	Naphthalene	Styrene	Toluene	Xylenes
78933 91203 100425 108883 1330207	EMISSIONS FC SOURCE MULTI	CAS 9901	106990	75070	71432	100414	50000	67561	78933	91203	100425	108883	1330207

MacArthur BART Construction HARP Risk Levels

	70-Year Adult	40-Year Worker				
Receptor	Carcinogenic Risk	Carcinogenic Risk	Chronic	Acute	UTM Co	ordinates
Number	# in a million # in a million Hazard		Hazard Index	Hazard Index	Easting	Northing
1	0.24	0.047	0.0061	0.037	564,662	4,187,014
2	0.20	0.040	0.0054	0.040	564,653	4,186,973
3	0.16	0.031	0.0041	0.029	564,691	4,187,007
4	0.028	0.0055	0.00075	0.015	564,579	4,187,160
5	0.027	0.0054	0.00073	0.015	564,595	4,187,157
6	0.026	0.0051	0.0007	0.014	564,611	4,187,155
7	0.025	0.0050	0.00068	0.014	564,626	4,187,153
8	0.024	0.0047	0.00064	0.013	564,639	4,187,150
9	0.022	0.0044	0.00061	0.013	564,652	4,187,148
10	0.021	0.0042	0.00058	0.012	564,666	4,187,145
11	0.020	0.0039	0.00054	0.012	564,681	4,187,142
12	0.019	0.0037	0.00051	0.011	564,695	4,187,139
13	0.018	0.0035	0.00049	0.011	564,708	4,187,137
14	0.017	0.0033	0.00047	0.010	564,722	4,187,135
15	0.016	0.0031	0.00044	0.0095	564,749	4,187,130
16	0.025	0.0049	0.00068	0.012	564,740	4,187,092
17	0.030	0.0060	0.00083	0.013	564,737	4,187,077
18	0.037	0.0073	0.0010	0.014	564,734	4,187,065
19	0.050	0.0099	0.0014	0.016	564,731	4,187,048
20	0.067	0.013	0.0018	0.018	564,729	4,187,035
21	0.089	0.018	0.0024	0.020	564,725	4,187,021
22	0.093	0.018	0.0025	0.021	564,722	4,187,006
23	0.086	0.017	0.0024	0.022	564,718	4,186,990
24	0.083	0.016	0.0023	0.023	564,715	4,186,974
25	0.084	0.017	0.0024	0.024	564,711	4,186,956

LSA ASSOCIATES, INC. 5804 N. FRUIT STREET, SUITE 103 FRESNO, CALIFORNIA 93711 559-490-1211 FAX

559-490-1211 FAX

BERKELEY CARLSBAD FORT COLLINS IRVINE

PALM SPRINGS SAN LUIS OBISPO POINT RICHMOND S. SAN FRANCISCO RIVERSIDE ROCKLIN

March 11, 2011

Mr. Joe McCarthy MacArthur Transit Community Partners, LLC 345 Spear Street, Suite 700 San Francisco, CA 94105

Construction Noise Reduction Plan for Phase 1 and 2 FDPs of the MacArthur Transit Subject: Village Project in Oakland, California

Dear Mr. McCarthy:

LSA Associates, Inc. (LSA) is pleased to submit this construction period Noise Reduction Plan for Phase 1 and Phase 2 Final Development Plans of the MacArthur Transit Village Project (Phase 1 and 2 FDPs)¹ in the City of Oakland (City), California. This report fulfills the requirements of the City's Standard Conditions of Approval NOISE-5 for the preparation of a site-specific Noise Reduction Plan, summarizes the results of the construction noise impact modeling and analysis for Phase 1 and 2 FDPs, and provides recommended feasible strategies to reduce construction noise impacts.

PURPOSE AND SCOPE

Noise impacts from implementation of the project were analyzed in the MacArthur Transit Village Project EIR dated January 2008. This Noise Reduction Plan for construction noise impacts has been prepared to meet the requirements of the City of Oakland's Standard Condition of Approval NOISE-5. The purpose of the Noise Reduction Plan is to demonstrate how noise associated with potential pier drilling and other extreme noise generators and construction activities associated with implementation of Phase 1 and 2 FDPs of the MacArthur Transit Village Project can be further reduced to ensure that maximum feasible noise attenuation is achieved. This Noise Reduction Plan summarizes the applicable noise limits, provides projected noise levels from construction activities, and outlines strategies consistent with the City's Standard Conditions of Approval to reduce construction noise levels to meet City standards.

For reference, the City's Standard Conditions of Approval that are applicable to this analysis are listed in Table 2 of this report. Per Condition NOISE-5, if any extreme noise generating construction activity will exceed 90 dBA L_{max}, a set of site-specific noise attenuation measures shall be prepared by a qualified acoustical consultant. The condition requires a plan for such measures that is based on the final design of the project be submitted for review and approval by the City prior to commencement of construction.

¹ These are the two FDPs applications currently on file with the City and the two construction phases of the MacArthur Transit Village Project that are anticipated to overlap to some extent and occur within the next two years. Consequently, the effects of both of these construction phases are considered in this analysis.
EXHIBIT D

NOISE TERMINOLOGY

Several noise measurement scales exist which are used to describe noise in a particular location. A *decibel* (dB) is a unit of measurement which indicates the relative intensity of a sound. The 0 point on the dB scale is based on the lowest sound level that the healthy, unimpaired human ear can detect. Changes of 3.0 dB or less are only perceptible in laboratory environments. Audible increases in noise levels generally refer to a change of 3.0 dB or more, as this level has been found to be barely perceptible to the human ear in outdoor environments. Sound levels in dB are calculated on a logarithmic basis. An increase of 10 dB represents a 10-fold increase in acoustic energy, while 20 dB is 100 times more intense, 30 dB is 1,000 times more intense. Each 10-dB increase in sound level is perceived as approximately a doubling of loudness. Sound intensity is normally measured through the *A-weighted sound level* (dBA). This scale gives greater weight to the frequencies of sound to which the human ear is most sensitive.

Noise impacts can be described in three categories. The first is audible impacts, which refers to increases in noise levels noticeable to humans. Audible increases in noise levels generally refer to a change of 3.0 dB or greater, since this level has been found to be barely perceptible in exterior environments. The second category, potentially audible, refers to a change in the noise level between 1.0 and 3.0 dB. This range of noise levels has been found to be noticeable only in laboratory environments. The last category is changes in noise level of less than 1.0 dB, which are inaudible to the human ear. Only audible changes in existing ambient or background noise levels are considered potentially significant.

As noise spreads from a source, it loses energy so that the farther away the noise receiver is from the noise source, the lower the perceived noise level would be. Geometric spreading causes the sound level to attenuate or be reduced, resulting in a 6-dB reduction in the noise level for each doubling of distance from a single point source of noise to the noise sensitive receptor of concern. There are many ways to rate noise for various time periods, but an appropriate rating of ambient noise affecting humans also accounts for the annoying effects of sound. Equivalent continuous sound level (L_{eq}) is the total sound energy of time-varying noise over a sample period. However, the predominant rating scales for human communities in the State of California are the L_{eq} and community noise equivalent level (CNEL) or the day-night average level (L_{dn}) based on A-weighted decibels (dBA). CNEL is the time-varying noise over a 24-hour period, with a 5 dBA weighting factor applied to the hourly L_{eq} for noises occurring from 7:00 p.m. to 10:00 p.m. to 7:00 a.m. (defined as sleeping hours). L_{dn} is similar to the CNEL scale but without the adjustment for events occurring during the evening hours. CNEL and L_{dn} are within one dBA of each other and are normally exchangeable. The noise adjustments are added to the noise events occurring the more sensitive hours.

Other noise rating scales of importance when assessing the annoyance factor include the maximum noise level (L_{max}), which is the highest exponential time-averaged sound level that occurs during a stated time period. The noise environments discussed in this analysis are specified in terms of maximum levels denoted by L_{max} for short-term noise impacts. L_{max} reflects peak operating conditions and addresses the annoying aspects of intermittent noise.

EXHIBIT D

NOISE SENSITIVE RECEPTORS

Noise sensitive receptors are defined in the City's Noise Element as land uses whose purpose and function can be disrupted or jeopardized by noise. Sensitive receptors include residences, schools, churches, hospitals, elderly care facilities, hotels and libraries and certain types of passive recreational open space. Understandably, noise is of special concern when it occurs near sensitive receptors.²

The closest sensitive receptors to the proposed construction site are the residential land uses located on MacArthur Boulevard that border the southern boundary of the construction site and the residential land uses on Telegraph Avenue that border the eastern boundary of the construction site. Although outpatient surgery centers are not specifically identified by the City as noise sensitive uses, this analysis treats the surgery center on Telegraph Avenue as a sensitive receptor. These three sensitive land use areas have been evaluated for potential noise impacts from construction activities associated with implementation of Phase 1 and 2 FDPs.

PROJECTED CONSTRUCTION NOISE IMPACTS

Construction noise impacts have been projected for Phase 1 and 2 FDPs based on project specific phasing and construction equipment details provided by the project construction engineer as part of the Construction Equipment Schedule dated January 28, 2011. The construction noise calculation spreadsheets are provided as Attachment A of this report. The Construction Equipment Schedule is provided in Attachment B. A summary of the projected noise levels is shown in Table 1.

Noise levels were calculated for each of the three months with the highest number of pieces of equipment scheduled to be used (May, June, and September of 2011). Both the maximum noise level, L_{max} and the worst case hourly average noise level $L_{eq}(h)$ were calculated for the three nearest sensitive land uses identified above. The calculated noise levels from construction activities have been made using the following formula:

$$L_{eq}(h) = E.L. + 10Log(U.F.) - 20Log(D/50) - 10Log(D/50) - A_{shielding}$$

Where:

E.L. = reference equipment noise emission level (based on L_{max} at 50 feet) U.F. = equipment usage factor (percent in use per typical hour as a fraction of 100 percent) D = distance between source and receiver in feet G = ground effects constant

A_{shielding} = attenuation provided by intervening barriers

The calculations use the general noise reference levels for each identified piece of construction equipment listed in Chapter 9 of the FHWA's Highway Construction Noise Handbook. The usage factor for the worst case hour calculation assumes that all pieces of equipment that would be used during that month would be operating at their full capacity during a typical hour. Those pieces of equipment that would be operating on-site, such as the 2000 Cat 330B Excavator, are assumed to operate 100 percent of the hour, while equipment that would never operate on-site for a full-hour in sequence,

² City of Oakland, 2005. City of Oakland General Plan Noise Element. June.

EXHIBIT D

such as dump trucks which will only operate while arriving and leaving the site, are assumed to operate a maximum of a half-hour.

Anticipated construction activities for the months of May and June 2011 are projected to result in noise levels in excess of 90 dBA L_{max} at the residential land uses on MacArthur Boulevard that border the construction site. In addition, for the month of May, the anticipated construction activities are also projected to exceed 90 dBA L_{max} at the residential land uses on Telegraph Avenue that border the construction site. As shown in Table 1, projected construction noise levels at the surgery center land use would reach up to 89 dBA L_{max} .

The projected worst case hourly average $L_{eq}(h)$ noise levels for anticipated construction activities would range up to 73 dBA $L_{eq}(h)$ at the closest residential land uses, and up to 67 dBA $L_{eq}(h)$ at the surgery center.

However, implementation of the noise reduction strategies outlined in the Standard Conditions of Approval would reduce these potential construction-related noise levels. In particular, compliance with Condition NOISE-5a, erection of temporary sound barriers along the property lines of impacted sensitive receptors would reduce these impacts. Therefore, the following site-specific noise reduction strategies shall be implemented as part of Phase 1 and 2 FDPs:

- Prior to initiation of on-site construction-related earthwork activities, a minimum 8 foot high temporary sound barrier shall be erected along the project property line abutting the residential sensitive land uses that are adjacent to the construction site on MacArthur Boulevard and Telegraph Avenue. The location of the temporary sound barriers is shown in Figure 1.
- Prior to initiation of on-site construction-related earthwork activities, a minimum 6 foot high temporary sound barrier shall be erected along the project property line abutting the outpatient surgery center land uses that is adjacent to the construction site on Telegraph Avenue.
- These temporary sound barriers shall be constructed with a minimum surface weight of 4 pounds per square foot and shall be constructed so that vertical or horizontal gaps are eliminated; these temporary barriers shall remain in place through the construction phase in which heavy construction equipment, such as excavators, dozers, scrapers, loaders, rollers, pavers, and dump trucks, are operating within 150 feet of the edge of the construction site by adjacent sensitive land uses.

Implementation of these site-specific noise reduction strategies are anticipated to reduce construction noise levels by a minimum of 8 dBA at the residential land uses on MacArthur Boulevard and Telegraph Avenue, and by a minimum of 5 dBA at the outpatient surgery center land use (see Table 1).

EXHIBIT D

Receptor		Noise Level Implemen Noise Ree Strategies	s Prior to tation of duction s (dBA)	Noise L Implem Noise F Strateg	evels With entation of Reduction ;ies (dBA)
	Phase Month	L _{max} ^a	L _{eq} (h)	L _{max}	$L_{eq}(h)^{b}$
Residential on	May 2011	92	69	84	61
MacArthur	June 2011	92	73	84	65
Boulevard	September 2011	89	69	81	61
Residential on	May 2011	92	70	84	62
Telegraph	June 2011	78	65	70	57
Avenue	September 2011	78	62	70	54
Surgery Center	May 2011	89	67	84	62
on Telegraph	June 2011	74	60	69	55
Avenue	September 2011	71	61	66	56

Table 1: Summary of Projected Construction Noise Levels

^a Projected L_{max} is the loudest value.

^b Includes shielding reduction calculation for use of temporary sound barriers.

Source: LSA Associates, Inc. 2011

EXXHBIT A

LSA

300 50

Project Site 6 Foot High Temporary Sound Barrier 8 Foot High Temporary Sound Barrier

MacArthur Transit Village Project Noise Reduction Plan Temporary Sound Barrier Locations _

EXHIBIT A

EXHIBIT D

STANDARD CONDITIONS OF APPROVAL REQUIREMENTS

The City's Standard Conditions of Approval are summarized in Table 2. The table describes how applicable conditions will be implemented into Phase 1 and 2 FDPs.

SCA		Implementation
Number"	Requirement	Action
NOISE-1	Days/Hours of Construction Operation. <i>Ongoing throughout demolition, grading, and/or construction.</i> The project applicant shall require construction contractors to limit standard construction activities as follows:	Will be complied with.
1a	Construction activities are limited to between 7:00 a.m. and 7:00 p.m. Monday through Friday, except that pile driving and/or other extreme noise generating activities greater than 90 dBA limited to between 8:00 a.m. and 4:00 p.m. Monday through Friday.	Will be complied with.
lb	Any construction activity proposed to occur outside of the standard hours of 7:00 a.m. to 7:00 p.m. Monday through Friday for special activities (such as concrete pouring which may require more continuous amounts of time) shall be evaluated on a case-by-case basis, with criteria including the proximity of residential uses and a consideration of resident's preferences for whether the activity is acceptable if the overall duration of construction is shortened and such construction activities shall only be allowed with the prior written authorization of the Building Services Division.	Will be complied with.
1c	 Construction activity shall not occur on Saturdays, with the following possible exceptions: Prior to the building being enclosed, requests for Saturday construction for special activities (such as concrete pouring which may require more continuous amounts of time), shall be evaluated on a case-by-case basis, with criteria including the proximity of residential uses and a consideration of resident's preferences for whether the activity is acceptable if the overall duration of construction is shortened. Such construction activities shall only be allowed on Saturdays with the prior written authorization of the Building Services Division. After the building is enclosed, requests for Saturday construction activities shall only be allowed on Saturdays with the prior written authorization of the Building Services Division, and only then within the interior of the building with the doors and windows closed 	Will be complied with.
1d	No extreme noise generating activities (greater than 90 dBA) shall be allowed on Saturdays, with no exceptions. Will be complied v No construction extinity shall take place on Sundays or Ecderal helidays. Will be complied v	
1e	No construction activity shall take place on Sundays or Federal holidays	Will be complied with.
1f	Construction activities include but are not limited to: truck idling, moving equip- ment (including trucks, elevators, etc.) or materials, deliveries, and construction meetings held on-site in a non-enclosed area.	Will be complied with.
1g	Applicant shall use temporary power poles instead of generators where feasible.	Will be complied with.
NOISE-2	Noise Control. <i>Ongoing throughout demolition, grading, and/or construction.</i> To reduce noise impacts due to construction, the project applicant shall require construction contractors to implement a site-specific noise reduction program, subject to city review and approval, which includes the following measures:	This report is submitted.
2a	Equipment and trucks used for project construction shall utilize the best available noise control techniques (e.g., improved mufflers, equipment redesign, use of intake silencers, ducts, engine enclosures and acoustically-attenuating shields or shrouds, wherever feasible).	Will be complied with.
2b	Except as provided herein, impact tools (e.g., jack hammers, pavement breakers, and rock drills) used for project construction shall be hydraulically or electrically powered wherever possible to avoid noise associated with compressed air exhaust from pneumatically powered tools. However, where use of pneumatic tools is unavoidable, an exhaust muffler on the compressed air exhaust shall be used; this muffler can lower noise levels from the exhaust by up to about 10 dBA. External jackets on the tools themselves shall be used if such jackets are commercially	Will be complied with.

EXHIBIT D

	available, and this could achieve a reduction of 5 dBA. Quieter procedures shall be used, such as drills rather than impact equipment, whenever such procedures are available and consistent with construction procedures.	
2c	Stationary noise sources shall be located as far from adjacent receptors as possible, and they shall be muffled and enclosed within temporary sheds, incorporate insulation barriers, or use other measures as determined by the City to provide equivalent noise reduction.	Will be complied with.
2d	The noisiest phases of construction shall be limited to less than 10 days at a time. Exceptions may be allowed if the City determines an extension is necessary and all available noise reduction controls are implemented.	The strategies included in the plan will ensure that all feasible noise reduction controls will be implemented per Condition NOISE-5.
NOISE-3	Noise Complaint Procedures. Ongoing throughout demolition, grading, and/or construction. Prior to the issuance of each building permit, along with the submission of construction documents, the project applicant shall submit to the City Building Services Division a list of measures to respond to and track complaints pertaining to construction noise. These measures shall include:	Will be complied with.
3a	A procedure and phone numbers for notifying the City Building Services Division staff and Oakland Police Department; (during regular construction hours and off- hours) shall be submitted to the Building Services Division.	Will be complied with.
3b	A sign posted on-site pertaining with permitted construction days and hours and complaint procedures and who to notify in the event of a problem. The sign shall also include a listing of both the City and construction contractor's telephone numbers (during regular construction hours and off-hours).	Will be complied with.
3c	The designation of an on-site construction complaint and enforcement manager for the project.	Will be complied with.
3d	Notification of neighbors and occupants within 300 feet of the project construction area at least 30 days in advance of extreme noise generating activities about the estimated duration of the activity.	Will be complied with. ^b
3e	A preconstruction meeting shall be held with the job inspectors and the general contractor/on-site project manager to confirm that noise measures and practices (including construction hours, neighborhood notification, posted signs, etc.) are completed.	Will be complied with.
NOISE-5	Pile Driving and Other Extreme Noise Generators. Ongoing throughout demolition, grading, and/or construction. To further reduce potential pier drilling, pile driving and/or other extreme noise generating construction impacts greater than 90 dBA, a set of site-specific noise attenuation measures shall be completed under the supervision of a qualified acoustical consultant. Prior to commencing construction, a plan for such measures shall be submitted for review and approval by the City to ensure that maximum feasible noise attenuation will be achieved. This plan shall be based on the final design of the project. A third-party peer review, paid for by the project applicant, may be required to assist the City in evaluating the feasibility and effectiveness of the noise reduction plan submitted by the project applicant. The criterion for approving the plan shall be a determination that maximum feasible noise attenuation will be achieved. A special inspection deposit is required to ensure compliance with the noise reduction plan. The amount of the deposit shall be determined by the Building Official, and the deposit shall be submitted by the project applicant concurrent with submittal of the noise reduction plan.	This report is submitted.
5a	Erect temporary plywood noise barriers around the construction site, particularly along on sites adjacent to residential buildings.	Will be complied with.
5b	Implement "quiet" pile driving technology (such as pre-drilling of piles, the use of more than one pile driver to shorten the total pile driving duration), where feasible, in consideration of geotechnical and structural requirements and conditions	Torque down or auger cast piles are planned to be used.
5c	Utilize noise control blankets on the building structure as the building is erected to reduce noise emission from the site.	Not anticipated
5d	Evaluate the feasibility of noise control at the receivers by temporarily improving the noise reduction capability of adjacent buildings by the use of sound blankets for	With implementation of reduction measures

EXHIBIT D

	example, and implement such measure if such measures are feasible and would noticeably reduce noise impacts.	impacts are not anticipated.
5e	Monitor the effectiveness of noise attenuation measures by taking noise measurements.	Will be complied with.

^a The SCA Number equates to the numbering found in the Conditions of Approval for the MacArthur Transit Village Project, as approved by Planning Commission action on June 4, 2008 and subsequently amended by City Council action on July 7, 2008.

NOISE REDUCTION PLAN

Site-Specific Strategies. Projected construction noise levels could result in noise levels that exceed 90 dBA L_{max} . In order to reduce construction noise levels to the maximum extent feasible pursuant to Condition NOISE-5 for identified impacted land uses, the following site-specific noise reduction strategies shall be implemented as part of Phase 1 and 2 FDPs:

- Prior to initiation of on-site construction-related earthwork activities, a minimum 8-foot high temporary sound barrier shall be erected along the project property line abutting the residential sensitive land uses that are adjacent to the construction site on MacArthur Boulevard and Telegraph Avenue. The location of the temporary sound barriers is shown in Figure 1.
- Prior to initiation of on-site construction-related earthwork activities, a minimum 6-foot high temporary sound barrier shall be erected along the project property line abutting the outpatient surgery center land uses that is adjacent to the construction site on Telegraph Avenue.
- These temporary sound barriers shall be constructed with a minimum surface weight of 4 pounds per square foot and shall be constructed so that vertical or horizontal gaps are eliminated; these temporary barriers shall remain in place through the construction phase in which heavy construction equipment, such as excavators, dozers, scrapers, loaders, rollers, pavers, and dump trucks, are operating within 150 feet of the edge of the construction site by adjacent sensitive land uses.

These noise reduction strategies will reduce construction noise during the loudest periods of construction for Phase 1 and 2 FDPs as shown in Table 1.

Standard Conditions of Approval. In addition to these site-specific noise reduction strategies, the project contractor shall comply with all the general noise reduction strategies of Conditions NOISE-1, -2, -3, and -5 listed in Table 2 of this report. Implementation of these strategies will further reduce construction noise impacts in the project vicinity.

Supplemental Noise Reduction Strategies. Further noise reduction could be achieved with implementation of the following supplemental noise reduction strategies.

Whenever feasible, the project contractor shall encourage implementation of the following strategies throughout all phases of construction:

- Use smaller or quieter equipment;
- Use electric equipment in lieu of gasoline or diesel powered equipment;
- Turn off all idling equipment when anticipated to not be in use for more than 5 minutes;
- Minimize drop height when loading excavated materials onto trucks;

EXHIBIT D

- Minimize drop height when unloading or moving materials on-site; and
- Sequence noisy activities to coincide with noisiest ambient hours.

NOISE MONITORING PLAN

Noise monitoring is required for all construction activities that would be considered extreme noise generators, activities that would result in noise levels in excess of 90 dBA L_{max} as measured at the receiving property. As noted previously, anticipated construction activities for the months of May and June 2011 could result in noise levels in excess of 90 dBA L_{max} at the residential land uses on MacArthur Boulevard that border the construction site. The anticipated construction activities for the month of May may also exceed 90 dBA L_{max} (without implementation of recommended strategies) at the residential land uses on Telegraph Avenue that border the construction site. Therefore, a noise monitoring program is required to monitor the noise levels at these potentially impacted sensitive receptor locations.

In addition to monitoring for exceedances of the maximum noise level threshold, Condition NOISE-5e requires noise monitoring to measure the effectiveness of noise attenuation measures. The noise monitoring effort shall be conducted as follows:

- Noise measurements shall be conducted on a weekly basis during the phases associated with the anticipated activities for the months of May, June, and September, and shall be conducted by a qualified acoustical consultant or a person trained by such a qualified consultant.
- These measurements shall be taken during mid-morning and mid-afternoon hours when background noise levels are anticipated to be lowest so as to try to capture noise from only construction noise sources.
- The measurements shall be taken at distance greater than 10 feet from the temporary sound barriers on the receptor property in order to determine the effectiveness of the sound barrier.
- If exceedances are identified, then the on-site construction manager shall be notified and the equipment use shall be adjusted so that noise levels are reduced.

CONCLUSION

With implementation of the site-specific noise reduction strategies outlined above, noise impacts from project-related construction activities would be reduced at impacted land uses. In addition, further noise reduction will be achieved with implementation of the strategies listed in the Standard Conditions of Approval and the supplemental noise reduction strategies outlined in this report. Furthermore, implementation of the noise monitoring program will ensure that potential noise impacts are monitored and action taken if exceedances are identified.

This report meets the requirements of Condition of Approval NOISE-5 for a site-specific noise reduction plan for Phase 1 and 2 FDPs.

EXHIBIT D

Thank you for requesting LSA's services for this task.

Sincerely, LSA ASSOCIATES, INC.

PMMLChre

David Clore, AICP Principal-in-Charge

Plug Ault

Philip Ault, LEED-AP Noise & Air Quality Specialist/Project Manager

Attachments:

Attachment A - Construction Noise Calculation Tables Attachment B - Construction Equipment Schedule and Key

ATTACHMENT A: CONSTRUCTION NOISE CALCULATION TABLES

Phase work for May 2011: Environmental Remediation and Bart Garage Earthwork Residentiaton MacArthur Boulevard

Receptor:	: Residential on MacArthur Boulevard)													
		Reference	2	Voise Leve	SI Calculatio	n Prior to I	mplementat	on of Noise Attenuat	ion Requirem	ents			Nois	se Level Ca	Iculation wi	h Noise Attenuat	tion Requirement	s Implemented	
		(dBA) 50 ft	Usage L	Jistance t	o Receptor	Ground S	shielding	Calculated (dBA)			Usage	Distance to	Receptor	Ground S	Shielding	Calculated (dBA)		Att	enuation technique
		Lmax	factor	Closest	Average	Effect	(dBA)	Lmax Leq	0.1*Leq	antiLog	factor	Closest	Average	Effect	(dBA)	nax Leq	0.1*Leq	antiLog im	plemented
A	2000 Cat 330B Excavator	81	-	50	180	0.52		81 66.98118	6.698117698	4990197.084	1	50	180	0.52	8	73 58.9811	8 5.898117698	790892.9387 Tei	mporary 8 ft sound barrier
۵	2005 Linkbelt 330 LX Excavator	81	-	30	120	0.52	8	5.436975 71.41868	7.141867671	13863333.5	-	30	120	0.52	80	7.43697 63.4186	8 6.341867671	2197190.289 Tei	mporary 8 ft sound barrier
ပ	2006 Bobcat S300 Skid steer	79																	
	Xtreme XFR-1245 Forklift	75																	
ш	Delmag RH26	84																	
ш	Drill Head Motor	84																	
U	TEREX Back Hoe Loader	88																	
I	48 meter Putzmeister Boom Pump	84																	
۲	1999 Mack Dump truck	88	0.5	50	180	0.52		88 70.97088	7.097087702	12505115.36	0.5	50	180	0.52	80	80 62.9706	88 6.297087702	1981927.22 Tei	mporary 8 ft sound barrier
27	1999 Mack Dump truck	88	0.5	30	120	0.52	6	2.436975 75.40838	7.540837675	34740628.83	0.5	30	120	0.52	8	4.43697 67.4083	88 6.740837675	5506018.613 Tei	mporary 8 ft sound barrier
¥	Fork Lift - Hyster H80XL	75																	
Σ	Ingersoll Rand Compressor	85																	
z	Link Belt 75 ton hydro	76																	
٩	JLG 600 series - 60 ft boom	75																	
C	Delivery Stake Truck - E-450 Super Duty	85																	
ð 🗠	Pecco PH 6000	75																	
U	Ditchuitch 1020 trencher	U a																	
o ⊢	TEPEY Pool Hool (PROFIE)	00																	
- :		83																	
	Hitachi Excavator - EX-550LC-5	81																	
>	Dynapac (jumping jack) - LT7000	87																	
8	STIHL - cut-off saw	20	0.5	30	120	0.52	2	4.436975 57.40838	5.740837675	550601.8613	0.5	30	120	0.52	8	6.43697 49.4083	88 4.940837675	87264.51418 Tei	mporary 8 ft sound barrier
×	Lincoln Commander 500 welder	73																	
≻	Concrete walk behind saw -EDCO SS-20	90																	
Z1	SAKAI - dirt roller	80	-	50	180	0.52		80 65.98118	6.598117698	3963854.44	-	50	180	0.52	8	72 57.9811	8 5.798117698	628228.5919 Tei	mporary 8 ft sound barrier
22	SAKAI - dirt roller	80	-	30	120	0.52	8	4.436975 70.41868	7.041867671	11012037.23	-	30	120	0.52	8	6.43697 62.4186	88 6.241867671	1745290.284 Tei	mporary 8 ft sound barrier
Ą	McNeilus Ready-mix Concrete truck	62																	
AB	Cement Finisher - Multiquip	80																	
AC	John Deere Skip loader - 210LE	88																	
AD	Caterpillar grader - 140H	85																	
AE	CAT 966F wheel loader	88																	
AF	Water truck - Sterling LT8500	85	0.5	50	180	0.52		85 67.97088	6.797087702	6267404.173	0.5	50	180	0.52	80	77 59.9708	88 5.997087702	993316.6208 Tei	mporary 8 ft sound barrier
AG	CAT D8R - diesel - Bull Dozer	88																	
AH	CAT 1055D paver	22	0.5	50	180	0.52		77 59.97088	5.997087702	993316.6208	0.5	50	180	0.52	80	69 51.9706	88 5.197087702	157430.075 Tei	mporary 8 ft sound barrier
		Distance to rec	ceptor:	Closest	Average		Lmax*	92	Sum	88886489.1					Lmax*	84	Sum	14087559.15	
	Environmental Remediation			50	180				Sum/12	7407207.425							Sum/12	1173963.262	
	BART Garage Earthwork			30	120			1	10*Log(Sum)	68.69654506							10*Log(Sum)	60.69654506	
									Leq(h)	69							Leq(h)	61	
						*Calculated	Lmax is the	-oudest value.					ŕ	Calculated I	-max is the l	oudest value.			

ams/Pile Cans and Grade Re work for June 2011. Piles Phase

Recentor	. Residential on MacArthur Boulevard		מפ	dills/r in	c dbo																
		Reference		Noise Leve	I Calculatio	n Prior to It	nplementa	tion of Noise	Attenuation R	tequirement	s			Nois	e Level Calc	ulation with No	oise Attenuation	n Requirement	ts Implemented		
		(dBA) 50 ft	Usage	Distance to	o Receptor	Ground &	shielding	Calculated (c	(BA)	-		Usage	Distance to	Receptor (Ground St	ielding Calc	ulated (dBA)			Attenuation technique	
		Lmax	factor	Closest	Average	Effect	(dBA)	Lmax	.eq 0.1	*Leq	antiLog	factor	Closest	Average	Effect	(dBA) Lmax	Leq (0.1*Leq	antiLog i	mplemented	
۷	2000 Cat 330B Excavator	81																			
ш	2005 Linkbelt 330 LX Excavator	81																			
υ	2006 Bobcat S300 Skid steer	52																			
5	Xtreme XFR-1245 Forklift	75	-	30	120	0.52	-	79.436975 65	41868 6.54	1867671 34	82311.932	-	30	120	0.52	8 71.43	697 57.41868	5.741867671	551909.2474 T	emporary 8 ft sound barrier	
ш	Delmag RH26	84	-	30	120	0.52		38.436975 74	41868 7.44	1867671 27	660986.89	-	30	120	0.52	8 80.43	697 66.41868	6.641867671	4383970.982 7	emporary 8 ft sound barrier	
L	Drill Head Motor	84	-	30	120	0.52		38.436975 74	41868 7.44	1867671 27	660986.89	-	30	120	0.52	8 80.43	697 66.41868	6.641867671	4383970.982 7	emporary 8 ft sound barrier	
Ċ	TEREX Back Hoe Loader	88	-	30	120	0.52	~	32.436975 78	41868 7.84	1867671 69	481257.66	-	30	120	0.52	8 84.43	697 70.41868	7.041867671	11012037.23 T	emporary 8 ft sound barrier	
H	48 meter Putzmeister Boom Pump	84	-	30	120	0.52		38.436975 74	41868 7.44	1867671 27	660986.89	-	30	120	0.52	8 80.43	697 66.41868	6.641867671	4383970.982	emporary 8 ft sound barrier	
7	1999 Mack Dump truck	88	0.5	30	120	0.52		32.436975 75	40838 7.54	0837675 34	740628.83	0.5	30	120	0.52	8 84.43	697 67.40838	6.740837675	5506018.613 T	emporary 8 ft sound barrier	
¥	Fork Lift - Hyster H80XL	75																			
Σ	Ingersoll Rand Compressor	85																			
z	Link Bett 75 ton hydro	76																			
۵.	JLG 600 series - 60 ft boom	75																			
a	Delivery Stake Truck - F-450 Super Duty	85	0.5	30	120	0.52		39.436975 72.	40838 7.24	0837675 17	411559.66	0.5	30	120	0.52	8 81.43	697 64.40838	6.440837675	2759546.237 -	emporary 8 ft sound barrier	
œ	Pecco PH 6000	75																			
U,	Ditchwitch 1030 trencher	80																			
) ⊢		8																			
- :		8 8																			
⊃ :	Hitachi Excavator - EX-550LC-5	19																			
>	Dynapac (jumping jack) - LT7000	87																			
×	STIHL - cut-off saw	70																			
×	Lincoln Commander 500 welder	73	0.5	30	120	0.52		77.436975 60	40838 6.04	0837675 10	98595.144	0.5	30	120	0.52	8 69.43	697 52.40838	5.240837675	174115.5966 -	emporary 8 ft sound barrier	
≻	Concrete walk behind saw -EDCO SS-20	60																			
Z1	SAKAI - dirt roller	80																			
Z2	SAKAI - dirt roller	80																			
AA1	McNeilus Ready-mix Concrete truck	29	0.5	30	120	0.52	-	33.436975 66	40838 6.64	0837675 43	73586.046	0.5	30	120	0.52	8 75.43	697 58.40838	5.840837675	693166.675 -	emporary 8 ft sound barrier	
AA2	McNeilus Ready-mix Concrete truck	79	0.5	30	120	0.52	,	33.436975 66	40838 6.64	0837675 43	73586.046	0.5	30	120	0.52	8 75.43	697 58.40838	5.840837675	693166.675 -	emporary 8 ft sound barrier	
AB	Cement Finisher - Multiquip	80																			
AC	John Deere Skip loader - 210LE	88																			
Ą	Caterpillar grader - 140H	85																			
AE	CAT 966F wheel loader	88																			
AF	Water truck - Sterling LT8500	85																			
AG	CAT D8R - diesel - Bull Dozer	88																			
AH	CAT 1055D paver	22																			
	-	Distance to rec	ceptor:	Closest	Average		Lmax*	92		Sum	217944486					Lmax*	84	Sum	34541873.22		
	BART Garage Piles. Grade Beams/Pile Ca	DS		30	120					Sum/12 1	8162040.5							Sum/12	2878489.435		
			ĺ						10*L	2 (uns)bc	2.5916464						1 1	10*Log(Sum)	64.5916464		
					<u> </u>	0	and the second se			red(n)	2			÷				(u)ban	00		
						Calculated	Lmax is me	Loudest value						,	alculated Lr	TRAX IS THE LOUG	sst value.				

EXHIBIT A

Phase work for Sept 2011: Grade Beams/Pile Caps, Vertical Concrete, Utilities, BART Plaza Residential on MasArthur Boulevard Receptor:

		Reference		Noise Level	Calculatio	In Prior to	Implements	tion of Nois	se Attenuat	tion Requiren	nents				Noise	eve
		(dBA) 50 ft	Usage	Distance to	Receptor	Ground	Shielding	Calculated	d (dBA)				Usage D	Distance to F	Receptor G	Prount
4	2000 Cat 330B Everyator	Lmax 81	factor	Closest	Average	Effect	(dBA)	Lmax	Leq	0.1°Leq	antiLog		factor	Closest	Average	Effect
< 2	2005 Linkbelt 330 LX Excavator	81	-	175	195	0.52		70.118639	66.10517	6.61051719	4078657.0	56	-	175	195	0
B2	2005 Linkbelt 330 LX Excavator	81	-	590	720	0.52		59.56236	51.80927	5.18092652	151679.37	13	-	590	720	0
B3	2005 Linkbelt 330 LX Excavator	81	-	155	205	0.52		71.172766	65.55785	6.555784681	3595710.1	92	-	155	205	0
5	2006 Bobcat S300 Skid steer	62	-	175	195	0.52		68.118639	64.10517	6.41051719	2573458.6	25	-	175	195	ö
C2	2006 Bobcat S300 Skid steer	79	-	590	720	0.52		57.56236	49.80927	4.98092652	95703.213	8	-	590	720	ö
ő	2006 Bobcat S300 Skid steer	79	-	155	205	0.52		69.172766	63.55785	6.355784681	2268739.7	54	-	155	205	ö
	Xtreme XFR-1245 Forklift	75	-	30	120	0.52		79.436975	65.41868	6.541867671	3482311.9	32	-	30	120	ö
шш	Delmag RH26 Drill Head Motor	84														
- 5	TEREX Back Hoe Loader	80	-	590	720	0.52		66.56236	58.80927	5.88092652	760197.64	51	-	590	720	0
G2	TEREX Back Hoe Loader	88	-	155	205	0.52		78.172766	72.55785	7.255784681	18021240.	44	-	155	205	0
Ħ	48 meter Putzmeister Boom Pump	84	-	30	120	0.52		88.436975	74.41868	7.441867671	27660986.	89	-	30	120	0
۲	1999 Mack Dump truck	88	0.5	590	720	0.52		66.56236	55.79897	5.579896524	380098.82	25	0.5	590	720	0
J2	1999 Mack Dump truck	88	0.5	155	205	0.52		78.172766	69.54755	6.954754685	9010620.	22	0.5	155	205	0
¥	Fork Lift - Hyster H80XL	75	-	30	120	0.52		79.436975	65.41868	6.541867671	3482311.9	32	-	30	120	0
M	Ingersoll Rand Compressor	85	-	175	195	0.52		74.118639	70.10517	7.01051719	10245123.	32	-	175	195	0
M2	Ingersoll Rand Compressor	85	-	590	720	0.52		63.56236	55.80927	5.58092652	381001.35	47	-	590	720	ö
M3	Ingersoll Rand Compressor	85	-	155	205	0.52		75.172766	69.55785	6.955784681	9032015.6	42	-	155	205	ö
z	Link Belt 75 ton hydro	76														
1		0 J J	Ċ	00		01.0		120001	00001 02	120200010 2	011111111	0	L C	00	007	Ċ
5 6	Delivery Stake Truck - F-450 Super Duty	000	0.0	0.05	120	0.52		89.4309/5 80.436075	72.40838	7 24083/0/5	17411550	00	0.0	0.05	120	öc
03	Delivery Stake Truck - F-450 Super Duty	85	0.5	175	195	0.52		74.118639	67.09487	6.709487195	5122561.6	20	0.5	175	195	0
; œ	Pecco PH 6000	75	5	-	-	4000			0.0010)	5	2		ŝ
S	Ditchwitch 1030 trencher	80														
⊢	TEREX Back Hoe Loader	88														
∍	Hitachi Excavator - EX-550LC-5	81														
>	Dynapac (jumping jack) - LT7000	87	0.5	175	195	0.52		76.118639	69.09487	6.909487195	8118713.1	02	0.5	175	195	0
LAN		0/	0.0	G/L	GGL	0.52		99.118039	70002 20	2710402191	0.989.101	53	0.0	G/L	002 002	50
200		0/	0.4	150	306	0.52		00700.04 337071.03	51./ 303/ E1 E17EE	3.11909024	14200 70	00	0.4	155	206	5 0
CAA ×	1 incola Commander 500 welder	273	0.0	201	007	70.0		00.1711.00	00/+0.10	0.1041.0400	142000.10	3	0.0	001	007	5
< >	Concrete walk behind saw -EDCO SS-20	06														
z	SAKAI - dirt roller	80														
AA1	McNeilus Ready-mix Concrete truck	52 20	0.5	30	120	0.52		83.436975	66.40838	6.640837675	4373586.0	46	0.5	80	120	0 0
AM2	MoNoilus Ready-mix Concrete truck	6/	0.0	30	1051	0.52		63.4309/3 68.118630	61 00487	6 100405/0/5	1286720.0	10	0.0	3U 17F	105	5 0
BB	Cement Finisher - Multiauip	80	0.0		001	70.0		00.110000	10400.10	0.100401104	0.02210021	2	0.0		001	ő
AC	John Deere Skip loader - 210LE	88														
q	Caterpillar grader - 140H	85														
AE	CAT 966F wheel loader	88														
¥ (Water truck - Sterling LI 8500	85														
P H	CAT JOK - Glesel - Bull DOZEL CAT 1055D naver	20														
ł		Distance to re	centor.	Closest	Average		max*	89		Sum	90940289	26				
	BART Garage Grade Beams/Pile Caps. Ver	rtical Concrete		30	120					Sum/12	7578357.4	38				
	Frontage Road Utilities			175	345					10*Log(Sum)	68.795750	85				
	Bart Plaza Demo			590	720					Leq(h)		69				
	W MacArthur Demo			155	205	*Calculate	d max is th	e loudest va	lue.						ç	alcula
					i											

EXHIBIT D

Usage	Distance to	Receptor	Ground	Shielding	Calculate	ed (dBA)			Attenuation technique	1
factor	Closest	Average	Effect	(dBA)	Lmax	Leq	0.1*Leq	antiLog	implemented	1
-	175	195	0.52	ø	62.11864	58.10517	5.81051719	646423.5803	Temporary 8 ft sound barrier	
-	590	720	0.52	8	51.56236	43.80927	4.38092652	24039.5603	Temporary 8 ft sound barrier	
-	155	205	0.52	80	63.17277	57.55785	5.755784681	569881.6605	Temporary 8 ft sound barrier	
	175	195	0.52	00 (60.11864	56.10517	5.61051719	407865.7056	Temporary 8 ft sound barrier	
- '	069	120	0.52	20 0	49.56236	41.80927	4.18092652	15167.93/13	Temporary 8 ft sound barrier	
	155	907	0.52	20 0	11/2/1/9	020744000	5.555/84681	3595/1.0192	Temporary 8 ft sound barrier	
-	00	171	7C'N	0	18064.17	0001 4.70	0.141001011	4/47.808.000	remporary on sound partier	
-	590	720	0.52	00	58.56236	50.80927	5.08092652	120483.2073	Temporary 8 ft sound barrier	
-	155	205	0.52	0 00	70.17277	64.55785	6.455784681	2856174.129	Temporary 8 ft sound barrier	
-	30	120	0.52	80	80.43697	66.41868	6.641867671	4383970.982	Temporary 8 ft sound barrier	
0.5	590	720	0.52	00	58.56236	47.79897	4.779896524	60241.60363	Temporary 8 ft sound barrier	
0.5	155	205	0.52	0	70.17277	61.54755	6.154754685	1428087.065	Temporary 8 ft sound barrier	
	30	120	0.52	ao o	71.43697	57.41868	5.741867671	551909.2474	Temporary 8 ft sound barrier	
	0/1	0024	0.02	0 0	FE FE 700	11001.20	61/100170	20.24/0201	Temporary 6.6 sound barrier	
	155	205	0.52	0 00	02200.00 77271.78	47.80927 61.55785	4./8092652 6.155784681	1431478.011	Temporary 8 ft sound barrier Temporary 8 ft sound barrier	
)						
0.5	30	120	0.52	ø	81.43697	64.40838	6.440837675	2759546.237	Temporary 8 ft sound barrier	
0.5	30	120	0.52	0	81.43697	64.40838	6,440837675	2759546.237	Temporary 8 ft sound barrier	
0.5	175	195	0.52	00	66.11864	59.09487	5.909487195	811871.3102	Temporary 8 ft sound barrier	
0.5	175	195	0.52	00 (68.11864	61.09487	6.109487195	1286729.313	Temporary 8 ft sound barrier	
0.0	G/L	GRI CRI	0.52	οα	40.56236	20 70807	4.40948/195	200/3.020/ 05/ 765075	Temporary 8 it sound barrier	
0.5	155	205	0.52	0 00	52.17277	43.54755	4.354754685	22633.65467	Temporary 8 ft sound barrier	
0.5	30	120	0.52	0	75.43697	58.40838	5.840837675	693166.675	Temporary 8 ft sound barrier	
0.5	30	120	0.52	8	75.43697	58.40838	5.840837675	693166.675	Temporary 8 ft sound barrier	
0.5	175	195	0.52	00	60.11864	53.09487	5.309487195	203932.8528	Temporary 8 ft sound barrier	
										- 1
				Lmax*	81		Sum	14413064.54		
							Sum/12	1201088.711		
							10 ^r Log(Sum)	60./95/5085		
			*Calculated	d Lmax is the	P Loudest v	alue.	1.162-			

Phase work for May 2011: Environmental Remediation and Bart Garage Earthwork Residential on Telegraph Receptor:

EXHIBIT	A

6280310 523359.2 57.188

Sum/12 sum/12 *Log(Sum) Leg(h)

-max*

 Sum
 39626079.3

 Sum/12
 3302173.276

 10*Log(Sum)
 65.18799858

Calculated Lmax is the Loudest value

Lmax*

Closest Average

Distance to receptor:

BART

*Calculated Lmax is the Loudest value

txis.
ng/Manual Calculation(full hour operation
ch Studies/Background/Const Noise Modeli
P:/MTC1101 MacArthur BART Tecl
P:\MTC1101 MacArthur BART Tech Studies\Background

Phase work for Sept 2011: Grade Beams/Pile Caps, Vertical Concrete, Utilities, BART Plaza Receptor: Residential on Telegraph

		Reference		Noise Le	evel Calculat	ion Prior to Implementa	ation of Noise At	enuation Requ	irements				Noise	Evel Calcu	lation with Noise A	ttenuation R	equirements Imple	nented	
		(dBA) 50 ft	Usage	Distance to F	Receptor	Ground Shielding	Calculate	d (dBA)	141 0.0	antil oc	Usage	Distance to	Receptor	Ground Shi	elding Calculated	l (dBA)	1 20 1900	ttenuation technique	
•			i and i and	100000	AVIAGO			L C C		antrog		1000010					red anneog "		
< 2	ZUUU CAI 300B EXCAVAIOF	0 8		1 325	36.6	0.43	7802714743	60.0010EAE	2 00010E 1	DUADR 035	Ŧ	305	365	0.43	8 56 74173	52 0010E E C	10112E 1E0266 0 T	amorary 8.4 exind harriar	
6	2000 LILINDER 300 LA LAGAVARD	5 a		1 1000	COC 0 BB	0.43	60 23 152/80	53 AREDDARS	5 3465 3	00156A 6406		240	COC OBS	043	B E0 221E0	AE 4 EE	A 5455 3511563T	emporary on accurate barrier	
20		5 a		155	000	0.43	71 17 776613	50 22 24 04 45	5 02221 B	55AB0 5017		155	000	043	0 02.00102 B 62 17077	E1 2 2 2 1 E	12001 125584 FT	emporary on accurate barrier	
3 2	2003 LILINUEL 330 LA EXCAVATO	0 10		100	080	0.40	21001211.11	03:32210113 E0.0040E4E	0.33221 0	100000000	- •	300	795	0.4.0	0 03.112/1	01.3221 0	10740E 1000001 17701	emporary on sound barrier	
3 8	2000 DOUCHL 3000 SKIU SIER	202		1 520	000	0.40	50 22 15 11 32 01	51 AFEDDAE2	5.002120 0	000702040	- •	220	000	0.4.0	0 04:7417.0	A2 AEE	0.2123 10.0430.01	emponary o It sound barrier	
3 8	2006 Dobott 2000 Okid stoor	01		155	000	040	80 17 7766 10	57 32 3104 4E	E 73224 E	207717056		155	000	010	0 00.00102	A 1002.04	03001 DEEAD OF T	emporany o it sound barrier	
3 0		75		155	250	0.43	65 17276612	1 01201200	5 801503 6	33144 5740		155	250	64.0	8 57 17277 I	50.01503 5.C	01503 100346.7T	emporary on sound barrier	
ם ב		2.0		2	007	21:0	21 00 17 1 00 17	0007001000		7410.44100	_	201	007	01.0	0 01/11/17			erriporary o resource partier	
U U		\$ 3																	
- 2		5 8		1 640	007	0.49	27 334E74 B0	CO AE EOOA EO	C OAGE 4	110469 603	•	EAD	007	0.4.0	0 60 22462	E0 4 66	E 2466 4 76006 T	amore 0 from horier	
5 6		8		1940	000	0.4.0	C1 32707 1 07	00.40000400 66.99940446	1 00400	1 104 00.03 0	- •	194	000	0.4.0	7202100.50 0	100.4.00	1022011 00470	eniporary o n sourid barrier	
22		8 3		100	080	0.43	74 4 70766 40	00.32210110	0.03221 4	1 00.800/07		100	080	0.4.0	1/7/1.0/ 0	0.02221 0	1 0 702 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007 01 2007	emporary o It sound barrier	
= :		ŧ 8		100	007	0.40	74.17210012	60070C10.10	2 20010/.0	UZ9240.119	- L	001	002	0.4.0	0 00.11211.0	2.6 60610.80	10/0/6/ chcine	emporary o it sound barrier	
5	1999 Mack Dump truck	88	5	0.000	080	0.43	647212270	/040/444//0	0./444/ 0	22220.8404	0.0	040	080	0.43	20155.90 S	49.444/ 4	170.787.87.87.97	emporary 8 It sound barrier	
75	1999 Mack Dump truck	88	O	5 155	390	0.43	78.17276612	63.3118012	6.33118	2143779.53	0.5	155	390	0.43	8 70.17277	55.3118 5	.53118 339766.2 T	emporary 8 ft sound barrier	
¥	Fork Lift - Hyster H80XL	75		1 155	250	0.43	65.17276612	58.01502889 {	5.801503 6	33144.5742	-	155	250	0.43	8 57.17277	50.01503 5.0	01503 100346.7 T	emporary 8 ft sound barrier	
M	Ingersoll Rand Compressor	85		1 325	365	0.43	68.74173287	64.0212545 6	5.402125 2	524209.808	-	325	365	0.43	8 60.74173	56.02125 5.6	02125 400060.3 T	emporary 8 ft sound barrier	
M2	Ingersoll Rand Compressor	85		1 540	680	0.43	64.33152489	57.45500453	5.7455 5	56545.2143	-	540	680	0.43	8 56.33152	49.455	4.9455 88206.47 T	emporary 8 ft sound barrier	
M3	Ingersoll Rand Compressor	85		1 155	390	0.43	75.17276612	63.32210115	6.33221 2	148869.865	-	155	390	0.43	8 67.17277	55.3221 5	.53221 340572.9 T	emporary 8 ft sound barrier	
z	Link Belt 75 ton hydro	76																	
٩	JLG 600 series - 60 ft boom	75																	
ð	Delivery Stake Truck - F-450 Super Duty	85	0	5 155	250	0.43	75.17276612	65.00472894 6	5.500473 3	1657 22.87 1	0.5	155	250	0.43	8 67.17277	57.00473 5.7	'00473 501733.3 T	emporary 8 ft sound barrier	
Q2	Delivery Stake Truck - F-450 Super Duty	85	0	5 155	250	0.43	75.17276612	65.00472894 6	5.500473 3	1657 22.87 1	0.5	155	250	0.43	8 67.17277	57.00473 5.7	"00473 501733.3 T	emporary 8 ft sound barrier	
ő	Delivery Stake Truck - F-450 Super Duty	85	0	5 325	365	0.43	68.74173287	61.01095454 6	5.101095 1	262104.904	0.5	325	365	0.43	8 60.74173	53.01095 5.3	01095 200030.1 T	emporary 8 ft sound barrier	
œ	Pecco PH 6000	75																	
S	Ditchwitch 1030 trencher	80																	
⊢	TEREX Back Hoe Loader	88																	
⊃	Hitachi Excavator - EX-550LC-5	81																	
>	Dynapac (jumping jack) - LT7000	87	0	5 325	365	0.43	70.74173287	63.01095454 6	3.301095 2	000301.471	0.5	325	365	0.43	8 62.74173	55.01095 5.5	01095 317026.4 T	emporary 8 ft sound barrier	
Ŵ	STIHL - cut-off saw	70	0	5 325	365	0.43	53.74173287	46.01095454 4	4.601095 3	9911.26143	0.5	325	365	0.43	8 45.74173	38.01095 3.8	01095 6325.509 T	emporary 8 ft sound barrier	
W2	STIHL - cut-off saw	70	0	5 540	680	0.43	49.33152489	39.44470457	3.94447 8	799.752491	0.5	540	680	0.43	8 41.33152	31.4447 3	.14447 1394.667 T	emporary 8 ft sound barrier	
W3	STIHL - cut-off saw	20	0	5 155	390	0.43	60.17276612	45.3118012	4.53118 3	3976.61584	0.5	155	390	0.43	8 52.17277	37.3118 3	.73118 5384.931 T	emporary 8 ft sound barrier	
×	Lincoln Commander 500 welder	73																	
≻	Concrete walk behind saw -EDCO SS-20	06																	
N	SAKAI - dirt roller	80																	
AA1	McNeilus Ready-mix Concrete truck	29	ò	5 155	250	0.43	69.17276612	59.00472894	5.900473 7	95193.6325	0.5	155	250	0.43	8 61.17277	51.00473 5.1	00473 126029.7 T	emporary 8 ft sound barrier	
AA2	McNeilus Ready-mix Concrete truck	79	°.	5 155	250	0.43	69.17276612	59.00472894 5	5.900473 7	95193.6325	0.5	155	250	0.43	8 61.17277	51.00473 5.1	00473 126029.7 T	emporary 8 ft sound barrier	
AA3	McNeilus Ready-mix Concrete truck	79	0	5 325	365	0.43	62.74173287	55.01095454 5	5.501095 3	17026.4184	0.5	325	365	0.43	8 54.74173	17.01095 4.7	'01095 50245.3 T	emporary 8 ft sound barrier	
AB	Cement Finisher - Multiquip	80																	
AC	John Deere Skip loader - 210LE	88																	
Ą	Caterpillar grader - 140H	85																	
ΑE	CAT 966F wheel loader	88																	
ΑF	Water truck - Sterling LT8500	85																	
AG	CAT D8R - diesel - Bull Dozer	88																	
Η	CAT 1055D paver	12		-										-					
		Distance to	recepto.	r: Closest	Average	Lmay	K* 78		Sum 2	0145729.27					Lmax [*] 70		Sum 3192883		
	BART Garage Grade Beams/Pile Caps, Ver	tical Concrete		155	250				Sum/12 1	678810.772						S	um/12 266073.6		
	Frontage Road Utilities			325	365			0 1 1	og(Sum) 6	2.25001747				-		10*Log	(Sum) 54.25002		
	Bart Plaza Demo			540	680				Leq(h)	62							Leq(h) 54		
	MIMAAAHur Damo			155	2+ 000	o I and i may is that o	and out vialing						*	n hatalının	and in the Loudaet ve	4			

EXHIBIT D

Phase work for May 2011: Environmental Remediation and Bart Garage Earthwork

Receptor:	Surgery Center on Telegraph	Deference		Noice Los	duolo 1	Drine to Imalam	iold be united	- Attonication	turner of the				Maina	olo Jone 1	dim noit-t-	M-Ioo Atto	of action Do		- Innerstand		
		(dBA) 50 ft	Usage	Distance to R	eceptor	Ground Shiel	ding Ca	culated (dBA)	Requirement	0	Usage Di	stance to	Receptor G	round Sh	nielding C	Noise Alle	IBA)	aduleurs	s Implemented		
		Lmax	factor	Closest /	Average	Effect (dB	A) Lma	x Leq	0.1*Le	q antiLog	factor	Closest	Average E	Effect (dBA) Lma	x Leq	0.1*	Leq antil	Log Attenuation	technique impleme	ented
< @	2000 Cat 330B Excavator 2005 Linkbelt 330 LX Excavator	8 81		30	390	0.43	5020-2020 67.0205	0991 59.32210	0115 5.932	06 1031349/.9 21 855480.502		30	390	0.43	0 9 0 9 0 9	4.309/ 05. 2.0206 54	13406 6.5	43221 270	0526.7 Temporary (o It sound barrier S ft sound barrier	
0	2006 Bobcat S300 Skid steer	29		2	200							2	200	2	5				finishing instance		
0	Xtreme XFR-1245 Forklift	75																			
ш і	Delmag RH26	22																			
т (Urill Head Motor	\$ 8																			
י בכ	IEKEX Back Hoe Loader 18 meter Putzmeister Room Pump	88																			
1	1999 Mack Dump truck	8	0.5	100	140	0.43	81.9794	0009 74.12375	5988 7.4123	76 25844967.4	0.5	100	140	0.43	5	3.97.94 69.	12376 6.9	912376 81	72896 Temporary (oft sound barrier	
5	1999 Mack Dump truck	88	0.5	250	390	0.43	74.0205	9991 63.3118	3012 6.331	18 2143779.53	0.5	250	390	0.43	5	9.0206 58	3.3118 5.	.83118 677	7922.6 Temporary (3 ft sound barrier	
×	Fork Lift - Hyster H80XL	75																			
ē Z	ingerson rana compressor Link Belt 75 ton hydro	00 20																			
, L	JLG 600 series - 60 ft boom	75																			
a	Delivery Stake Truck - F-450 Super Duty	85																			
Υŭ	Pecco PH 6000	75																			
o ⊢		00 88																			
	Hitachi Excavator - EX-5501 C-5	818																			
>	Dvnapac (jumping jack) - LT7000	87																			
M	STIHL - cut-off saw	20	0.5	250	390	0.43	56.0205	9991 45.3118	3012 4.531	18 33976.6158	0.5	250	390	0.43	5	1.0206 40	0.3118 4.	03118 107	744.35 Temporary (o ft sound barrier	
×	incoln Commander 500 welder	23																			
. >	Concrete walk behind saw -EDCO SS-20	06																			
Z1	SAKAI - dirt roller	80	-	50	140	0.43		80 69.13405	5984 6.9134	06 8192302.57	-	50	140	0.43	2	75 64.	13406 6.4	113406 25	90634 Temporary (b ft sound barrier	
Z2	SAKAI - dirt roller	80	-	250	390	0.43	66.0205	9991 58.32210	0115 5.832	21 679532.317	-	250	390	0.43	5 6	1.0206 53	3.3221 5.	.33221 2	214887 Temporary (b ft sound barrier	
AA	McNeilus Ready-mix Concrete truck	29																			
AB	Cement Finisher - Muttiguip	80																			
AC ,	John Deere Skip loader - 210LE	88																			
AD	Caterpillar grader - 140H	85																			
AE	CAT 966F wheel loader	88																			
AF	Water truck - Sterling LT8500	85	0.5	30	140	0.43	89.4365	7499 71.12375	5988 7.1123	76 12953167.7	0.5	30	140	0.43	5 84	43697 66.	12376 6.6	\$12376 40	96151 Temporary	ift sound barrier	
AG	CAT D8R - diesel - Bull Dozer	88																			
HA	CAT 1055D paver	11	0.5	30	140	0.43	81.4369	7499 63.12375	5988 6.3123	76 2052938.73	0.5	30	140	0.43	5 76	43697 58.	12376 5.8	312376 649	9196.2 Temporary (b ft sound barrier	
		Distance to ret	ceptor:	Closest	Average		Lmax*	89	Su	im 63069643.2					Lmax*	84		Sum 199	44372		1
<u>,</u>	Environmental Remediation			30	140		-		Sum/	12 5255803.6							s	sum/12 16	662031		
_	BART Garage Earthwork			250	390				10*Log(Su	m) 67.2063913							10*Log	g(Sum) 62.	20639		
									Led	(h) 67								Leq(h)	62		
					•	Calculated Lmax is th	e Loudest value.						Ű,	alculated Lr	nax is the Lo	udest value.					
			1																		
	Phase work for June 2011: Pil	es and Grade	Beam	s/Pile Cap	s																
Receptor: :	Surgery Center on Telegraph																1				Ī
		Reference	Ī	Noise Le	vel Calcula	ation Prior to Implem	entation of Noi:	se Attenuation	Requirement	s			Noise	Level Calc	ulation with	Noise Atter	nuation Re	aquirements	s Implemented		
		(dBA) 50 ft	Usage	Distance to R	eceptor	Ground Shiel	ding Ca	culated (dBA)	- 14F -		Usage Di	stance to	Receptor G	round Sh	nielding C	alculated (d	IBA)	14		a mala mi ann inde ei	-
	L 2000 T 0 0000	Lmax	ractor	CLOSEST	Average	Ellect (ac	A) LMa	x req	0.1 LG	d antiLog	TACTOF	losest	Average	LIECT		x red	1.0	Leq antil	Log Attenuation	i recunique inpiene	Datua
< 1	ZUUU CAT 33UB EXCAVATOR	10																			
m (2005 Linkbelt 330 LX Excavator	18																			
0	2006 Bobcat S300 Skid steer	29													1						
5	Xtreme XFR-1245 Forklift	75	. .	250	390	0.43	61.0205	9991 53.32210	0115 5.332	21 214886.986	÷ -	250	390	0.43	201 201	5.0206 48	3.3221 4.	.83221 679	953.23 Temporary	3 ft sound barrier	
шц	Delmag RH26	25 2		250	390	0.43	70.0205	9991 62.32210	0115 6.232 0115 6.232	21 1706908.01		250	068	0.43	999 109	0.0206 57	7.3221 5.	73221 535	97.71.7 Temporary	3 ft sound barrier	
. r		ŧ a		230	000	0.4.0	2020.01	0000 0000000000000000000000000000000000	202.0 0110	21 1/00000.01		200	060	24 G	р (п і	0070.0	0 1770	CF F000F	Struct Temporary		
פ	IEKEX Back Hoe Loader	8		097	085	0.43	14.020	9991 66.32210	250.0 0110	00.800/824 12		092	065	0.43	0 0 0 1	19 90701	0 1.3221		Sobe45 Lemporary	s π sound barrier	
	48 meter Putzmeister Boom Pump	¥ 8	- 4	250	065	0.43	1020.07	0001 62.32210	1115 6.232	21 1/06908.01	- 5	250	065	0.43	0 0 0	16 9020.0	G 1225.	329 17729.	9/ /1./ lemporary	3 It sound barrier	
2		25	0.0	007	080	0.4.0	14.020	99991 00.0110		10 214-01/9.00	C'D	007	nec	0.43	0	00 00 70.6	0 0110.0	1/0 01100.	/ azz.o Temporary (O IL SOURD DAILIEL	
<u>د</u> ک	noresoll Rand Compressor	85																			
z	Link Belt 75 ton hvdro	26																			
. ,	JLG 600 series - 60 ft boom	75																			
a	Delivery Stake Truck - F-450 Super Duty	85	0.5	250	390	0.43	71.0205	9991 60.3118	3012 6.031	18 1074434.93	0.5	250	390	0.43	5	3.0206 55	5.3118 5.	.53118 339	9766.2 Temporary 8	3 ft sound barrier	
æ	Pecco PH 6000	75																			
s	Ditchwitch 1030 trencher	80																			
H :	TEREX Back Hoe Loader	88																			
- ' - :	Hitachi Excavator - EX-550LC-5	81																			
> 3	Dynapac (jumping jack) - L I /000	/8/																			
*	STITL - CUT-OTI SAW incole Commender EOD welder	0.5	40	260	200	0.42	50.0205	0001 48 2110	1010 1021	10 67703 3613	20	2EO	000	0.42	u u	51 30001	1 2110 4	22110 21	1427 B Tomooron	2.0 cound horrior	
< >	Concrete welle helind sour verder	2 8	0.0	0.67	080	0.4.0	2020/80	9991 40.0110	100.4 21.00	7107726110 01	0.0	007	080	0.43	0	24 0070'+	4	01100	14-27.0 TEILIPUIRIY	o II souira Daliter	
- 1	CUIRTER WAIN UPTITIN SAW -ELUCU 33-20 2017/11 - Airt rollor	06																			
	SAKAL - dirt roller	8																			
AA1	McNeilus Ready-mix Concrete truck	20	0.5	250	390	0.43	65.0205	9991 54.3118	3012 5.431	18 269885.853	0.5	250	390	0.43	5	0.0206 45	9.3118 4.	93118 85	5345.4 Temporary (3 ft sound barrier	
AA2	McNeilus Ready-mix Concrete truck	79	0.5	250	390	0.43	65.0205	9991 54.3118	3012 5.431	18 269885.853	0.5	250	390	0.43	5	0.0206 45	9.3118 4.	.93118 85	5345.4 Temporary	3 ft sound barrier	
AB	Cement Finisher - Muttiquip	80																			
AC ,	John Deere Skip loader - 210LE	88																			
AD	Caterpillar grader - 140H	85																			
AE	CAT 966F wheel loader	88																			
Å.	Water truck - Sterling LT8500	85																			
AG I	CAT D8R - diesel - Bull Dozer	4 88																			
- L	CA I 1000 L paver	Distance to rec		Clanant	A.1000000		8.000	1	ć	404 40040 E					******* •	00	-		1 LUU		7

EXHIBIT A

4252931 354410.9 55.49507

*Calculated Lmax is the Loudest value

 Sum
 13448948.5

 Sum/12
 1120745.71

 10*Log(Sum)
 60.4950708

 Leq(h)
 60

Calculated Lmax is the Loudest value

-max*

Closest Average 250 390

receptor:

Distance to

BART Garage Piles, Grade Beams/Pile Cap

ŝ
ation).
r opera
hou
llul)r
Iculation
Ca
∖Manua
lodeling
se M
t Noi
\Cons
round
ackg
idies/B
1 St
T Tecl
BAR'
Arthur
1 Mac
110
P:\MTC

EXHIBIT D

		Reference		Noi	se Level Calc	ulation Prior to	o Implementati	on of Noise At	enuation Requ	uirements				Noi	se Level Ca	Iculation with N	oise Attenua	ition Require	ements Implei	nented	
		(dBA) 50 ft	Usage	Distance	to Receptor	Ground	Shielding	Calculat	ed (dBA)			Usage	Distance t	o Receptor	Ground	Shielding Calo	ulated (dBA	(
۷	2000 Cat 330B Excavator	Lmax 81	TACTOR	Closes	Average	ETTect	(ABA)	Lmax	Leq	0.1 Led	antiLog	ractor	Closest	Average	ETTECT	(abA) Lmax	Leq	0.1 Led	antiLog	Attenuation technic	lue implemented
B1	2005 Linkbelt 330 LX Excavator	81		1 3	15 32	5 0.4	3	65.01318901	61.24620543	6.124621	1332356.8	-	315	325	0.43	5 60.01	319 56.246	\$21 5.62462	21 421328.2 -	emporary 8 ft sound	l barrier
B2	2005 Linkbelt 330 LX Excavator	81		1 3	70 48	0 0.4	0	63.61536561	57.13080904	5.713081	516512.58	-	370	480	0.43	5 58.61	537 52.130	81 5.21308	31 163335.6 -	emporary 8 ft soun	l barrier
83	2005 Linkbelt 330 LX Excavator	81		4 0	30 56	0.4	<i>ო</i> ი	62.31003098	55.50400205	5.5504	355140.503		430	560	0.43	5 57.31	003 50.5	04 5.050	04 112305.3	emporary 8 ft soun	l barrier
5 8	2006 Boboat S300 Skid steer	6/	*		20 32 70 48	0.4	" ,	61.61536561	59.24520543 66.13080004	5.5424021	375807 406		315	072	0.43	0.050 0 7 5 5 5 5	519 54.240 527 50 130	201 5.42402 181 5.01308	1.0450501 12 - 8 730201 15	emporary 8 ft sound	a barrier Marrier
C3 C3	2006 Bobcat S300 Skid steer	62	-		30 56	100		60.31003098	53.50400205	5.3504	224078.508		430	290	0.43	5 55.31	003 48.5	04 4.850	70859.85	emporary 8 ft sound	d barrier
30	Xtreme XFR-1245 Forklift	75	,-		50 39	0.4	0.00	61.02059991	53.32210115	5.33221	214886.986		250	390	0.43	5 56.0	206 48.32	21 4.8322	21 67953.23	emporary 8 ft soun	d barrier
ш	Delmag RH26	22																			
ш	Drill Head Motor	28																			
61	TEREX Back Hoe Loader	88		1 3	70 48	0 0.4	e 1	70.61536561	64.13080904	6.413081	2588695.11	-	370	480	0.43	5 65.61	537 59.130	81 5.91308	31 818617.3 7	emporary 8 ft soun	d barrier
G2	TEREX Back Hoe Loader	88		1	30 56	0 0.4	3	69.31003098	62.50400205	6.2504	1779918.86	-	430	560	0.43	5 64.31	003 57.5	5.750	J4 562859.8 ⁻	emporary 8 ft soun	d barrier
Ħ	48 meter Putzmeister Boom Pump	2		1 2	50 39	0 0.4	с С	70.02059991	62.32210115	6.23221	1706908.01	-	250	390	0.43	5 65.0	0206 57.32	21 5.7322	21 539771.7	emporary 8 ft soun	d barrier
٢	1999 Mack Dump truck	88	0.	5 3	70 46	0 0.4	3	70.61536561	61.12050908	6.112051	1294347.56	0.5	370	480	0.43	5 65.61	537 56.120	151 5.61205	51 409308.6	emporary 8 ft soun	d barrier
75	1999 Mack Dump truck	88	ö	5 4	30 56	0 0.4	0.0	69.31003098	59.49370209	5.94937	889959.43	0.5	430	560	0.43	5 64.31	003 54.49	37 5.4493	37 281429.9	emporary 8 ft soun	d barrier
¥	Fork Lift - Hyster H80XL	22		1	50 36	0.4	e .	61.02059991	53.32210115	5.33221	214886.986	, - 1	250	390	0.43	5 56.0	0206 48.32	21 4.8322	21 67953.23	emporary 8 ft soun	d barrier
M	Ingersoll Rand Compressor	85	- 1	1 3	15 32	5 0.4	3	69.01318901	65.24620543	6.524621	3346728.97	-	315	325	0.43	5 64.01	319 60.246	321 6.02462	21 1058329 -	emporary 8 ft soun	d barrier
M2	Ingersoll Rand Compressor	85		1 3	70 48	0 0.4	с С	67.61536561	61.13080904	6.113081	1297420.94	-	370	480	0.43	5 62.61	537 56.130	81 5.61308	31 410280.5	emporary 8 ft soum	i barrier
M3	Ingersoll Rand Compressor	85		1	30 56	0 0.4	3	66.31003098	59.50400205	5.9504	892072.61	-	430	560	0.43	5 61.31	003 54.5	5.450	4 282098.1	emporary 8 ft soun	d barrier
z	Link Belt 75 ton hydro	76																			
т ;		£ 1											0								
58	Delivery Stake Truck - F-450 Super Duty	68 19	00	.ν č	32 04	0.0		71.02059991	60.3118012 60.3448042	6.03118	10/4434.93	0.5	250	062	0.43	5 66.C	1206 55.31	18 5.5311 10 E E 211	18 339/66.2	emporary 8 ft soun	d barrier
20	Delivery Stake Iruck - F-450 Super Duty	00 18	j c	5 V C	50 35 15 35	5 0.4	0 0	60.01318001	62 23500548	6 223501	1673364.40	0.0	215	325	0.43	5 64 01	310 57 235	10 0.0011 01 570350	2.00/800 01	emporary o n soun-	l barrier H harrier
g œ	Pecco PH 6000	75	ó	2	20	5	,	000101000	0100001100		21-12-22-22-22-22-22-22-22-22-22-22-22-2	2	2	000	2			2004100 100	010000	empored on some	121102
s S	Ditchwitch 1030 trencher	80																			
⊢	TEREX Back Hoe Loader	88																			
∍	Hitachi Excavator - EX-550LC-5	81																			
>	Dynapac (jumping jack) - LT7000	87	0.5	5 3	15 32	5 0.4	3	71.01318901	64.23590548	6.423591	2652103.98	0.5	315	325	0.43	5 66.01	319 59.235	91 5.92359	91 838668.9 -	Temporary 8 ft soun	d barrier
W1	STIHL - cut-off saw	20	0.	5 3	15 32	5 0.4	3	54.01318901	47.23590548	4.723591	52916.4313	0.5	315	325	0.43	5 49.01	319 42.235	91 4.22359	91 16733.64 7	emporary 8 ft soun	d barrier
W2	STIHL - cut-off saw	20	ö	2	70 46	0.4	e .	52.61536561	43.12050908	4.312051	20514.0263	0.5	370	480	0.43	5 47.61	537 38.120	151 3.81205	51 6487.105	emporary 8 ft soun	d barrier
W3	SI IHL - cut-off saw	Q #	ö	5 4	30 56	V0 0.4		51.31003098	41.493/0209	4.14937	14104.9064	9.0	430	099	0.43	5 46.31	003 36.49	137 3.6493	3/ 4460.363	emporary 8 ft soun	1 barrier
× >	Concrete welk behind caw -FDCO SS-20	73																			
- N	SAKAI - dirt roller	88																			
AA1	McNeilus Ready-mix Concrete truck	79	0.5	5 2	50 39	0 0.4	3	65.02059991	54.3118012	5.43118	269885.853	0.5	250	390	0.43	5 60.0	206 49.31	118 4.9311	18 85345.4 7	emporary 8 ft soun	d barrier
AA2	McNeilus Ready-mix Concrete truck	29	0.1	2 2	50 39	0 0.4.	3	65.02059991	54.3118012	5.43118	269885.853	0.5	250	390	0.43	5 60.0	0206 49.31	118 4.9311	18 85345.4 -	emporary 8 ft soun	d barrier
AA3	McNeilus Ready-mix Concrete truck	62	0.	5 3	15 32	5 0.4	3	63.01318901	56.23590548	5.623591	420330.155	0.5	315	325	0.43	5 58.01	319 51.235	91 5.12359	1 132920.1	emporary 8 ft soun	d barrier
AB	Cement Finisher - Multiquip	80																			
AC	John Deere Skip loader - 210LE	88																			
AD	Caterpillar grader - 140H	85																			
Ä	CAT 966F wheel loader	88																			
4	Water truck - Sterling L18500	88																			
P I	CAT JORG - DIESEI - BUIL DOZEF	88																			
č	ionad account	Distance to r	acantor	- Cloce	vera	a	max	71		Sum	15457302 1					mav*	66	Sur.	m 4888057		
	BABT Garada Grada Beame/Dila Care Vierti	nal Concrata	acepton 1	000	201 776141		FIIIGN			C1/2010	10001001						8	1) out 0	1000001		
	Frontade Road Littlike			4 é	15 32	2 4			10		61 00051 10								M 56 00055		
	Bart Plaza Demo			100	70 48	0			?	Lea(h)	61							Leal	h) 56		
	W MacArthur Demo			4	30 56	0 *Calculated L	max is the Louc	test value.		1					*Calculated	Lmax is the Loud	est value.	i			
					2																

EXHIBIT A

ATTACHMENT B: CONSTRUCTION EQUIPMENT SCHEDULE AND KEY

See Exhibit I

13

FXXHRATA

CALIF

WILSON IHRIG & ASSOCIATES ACOUSTICAL AND VIBRATION CONSULTANTS

CALIFORNIA

NEW YORK

WASHINGTON

6001 SHELLMOUND STREET SUITE 400 EMERYVILLE, CA 94608 Tel: 510-658-6719 Fax: 510-652-4441 WWW.wiai.com

10 March 2011

MacArthur Transit Community Partners LLC c/o Art May Keystone Development Company 5858 Horton Street Suite 170 Emeryville, California 94608

Subject: MacArthur Transit Village Vibration from Construction

Dear Mr. May:

Summary

The following are key points from our review of the information provided¹ regarding the proposed MacArthur Transit Village Project (MTV Project):

- Vibration impacts of the proposed MTV Project were analyzed in the MacArthur Transit Village Project EIR dated January 2008 and no significant impacts were identified based on the City's thresholds for vibration and the City's standard condition of approval for vibration.
- Based on the Surgery Center assertion that the MTV Project construction would have significant vibration impacts on the operations at the Surgery Center, the Project Sponsor has requested Wilson Ihrig & Associates (WIA) to review the proposed Construction Equipment Schedule using the FTA criteria referenced by the Surgery Center.
- We understand that as part of the Construction Equipment Schedule for Phases 1 and 2, the Project Sponsor has committed to the use of reduced-vibratory construction methods (as described below) to minimize the effects of construction equipment working adjacent to the Surgery Center.
- With the implementation of vibration-reduction methods that the Project Sponsor has detailed as part of the Construction Equipment Schedule for Phases 1 and 2, the vibration generated by the construction activities would not exceed the FTA criteria referenced by the Surgery Center.
- WIA recommends that vibration monitoring be conducted at the Surgery Center to document the baseline conditions during operations prior to construction and that vibration at the facilities be monitored during key periods of construction that are subject to vibration to verify that the Construction Equipment Schedule measures are sufficient to ensure that vibration levels do not exceed the FTA criteria.

¹ Construction Equipment Schedule dated January 28, 2011, Illustrative Plan (L-1.0) dated 9.16.2010 and Vesting Tentative Tract Map No. 8047 (T-4) dated 10-25-10.

Discussion

As requested, we have reviewed the MTV Project Construction Equipment Schedule for Phases 1 and 2 to develop a response to the letter prepared by Timothy G. Brown and Robert P. Alvarado of Charles M. Salter Associates (CSA) and submitted to Ed Erwin of Alta Bates Summit Medical Center on 12/21/10. The letter raised concerns about the vibration impacts of construction activities on the Surgery Center located at 3875 Telegraph Avenue and suggested that certain FTA vibration criteria could be exceeded based on certain assumptions about the types of construction equipment that would be used.

Project Conditions

The City's standard condition of approval for construction-related vibration was included in the MTV Project Conditions (see COA NOISE-6). Our evaluation and recommendation fulfill part of the requirements of this condition.

Short-term Vibration

The December 21, 2010 letter from CSA asserts that the MTV Project could have a potentially significant vibration impact on the Surgery Center based on the assumption that construction adjacent to the Surgery Center would include the use of pile driving, hydraulic breakers, drilled piers, rammed aggregate piers, and vibratory compaction. The letter cites the Federal Transit Administration (FTA) vibration impact criteria² for General Assessment and Detailed Analysis.

The Detailed Analysis criteria cited by the Surgery Center are appropriate for an engineeringlevel analysis where detailed information on the vibration propagation properties of the ground and the source vibration are available. A vibration impact that is identified using the General Assessment criteria is sometimes cleared once the engineering analysis is performed and compared to the Detailed Analysis Criteria. Thus, the General Assessment evaluation and criteria are considered to be more conservative and we have used them in our analysis.

The following are the FTA criteria:

- Category 1: Buildings where vibration would interfere with interior operations
 - The criterion is based on what is acceptable for most moderately sensitive equipment such as optical microscopes.
 - The sensitivity of the equipment and surgery activities at the Surgery Center has not been confirmed.
 - Criterion: 65 VdB
- Category 2: Buildings where people normally sleep
 - The Surgery Center is an outpatient facility and this criterion would not apply as patients do not spend the night or sleep for any significant period of time; they only spend time in the recovery room to awaken from anesthesia.
 - Criteria:
 - 72 VdB for frequent events (70 or more per day)
 - 75 VdB for occasional events (30 to 70 per day)
 - 80 VdB for infrequent event (fewer than 30 per day)
- Category 3: Institutional land uses with primarily daytime use
 - If the surgical equipment and methods at the Surgery Center are not sufficiently sensitive to warrant the use of the Category 1 criterion, these would be applied
 - Criteria:

² FTA, Transit Noise and Vibration Impact Assessment, May 2006.

- 75 VdB for frequent events (70 or more per day)
- 78 VdB for occasional events (30 to 70 per day)
- 83 VdB for infrequent event (fewer than 30 per day)

For reference, the vibration level generated by a person walking within the same room can be on the order of 60 to 65 VdB, and the vibration from a bus or truck at city speeds hitting a bump on a street 25 feet away is on the order of 80 VdB. A 3 ton truck traveling at 35 mph on a smooth road would generate vibration less than 60 VdB at a distance of 25 feet. Although the sensitivity of the Surgery Center equipment has not been confirmed, the analysis below demonstrates that the MTV Project Construction would not exceed the Category 1 criterion.

Construction Equipment Schedule

We have reviewed the Construction Equipment Schedule for Phases 1 and 2 (dated January 28, 2011). The Project Sponsor has committed to limit the use of reduced-vibratory construction methods, as needed, in the vicinity of the Surgery Center, to minimize the effects of construction equipment and ensure the FTA Category 1 criterion is not exceeded. Contrary to the assumptions made in the CSA letter, the Construction Equipment Schedule does not include the use of pile driving, hydraulic breakers, drilled piers, or aggregate piers adjacent to the Surgery Center.

The construction methods contained in the Construction Equipment Schedule and potential vibration levels include:

- No driven/impact piles used
 - The construction of Phases 1 and 2 would not utilize piles driven into the ground by a hammer (pile driving).
 - The foundations for the BART parking garage are contemplated as augur cast or torque down piles and the foundation for the proposed Phase 2 residential structure would be a poured in place mat slab.
- Limited demolition
 - The demolition work near the Alta Bates Surgery Center would be to remove asphalt, thus no jackhammers or comparable equipment would be required.
 - Excavators would be used to remove the asphalt.
- Compaction Methods
 - The MTV Project plans to use large vibrating roller compactors for compacting soil, road base, and asphalt at certain locations throughout most of the project site.
 - This equipment would generate a vibration level on the order of 94 VdB at a distance of 25 feet.
 - Smaller vibrating rolling compactors, vibrating plate compactors, and/or jumping jack compactors would also be utilized as necessary, based on the monitoring described below, to ensure the FTA Category1 criterion is not exceeded at the Surgery Center.
 - These types of equipment would generate less vibration than a large vibrating roller compactor, possibly comparable to the vibration generated by a small bulldozer, which would typically generate a vibration level on the order of 58 VdB at a distance of 25 feet, well below any of the thresholds described above.

- For compaction work adjacent to the Surgery Center, the Project Sponsor has included in the Construction Equipment Schedule options to employ one or more of the following strategies if monitoring shows that additional methods are necessary to avoid interference with operation of the Surgery Center:
 - Use of sheep foot non-vibrating compactors.
 - Use of non-vibrating roller compactors.
 - Scheduling vibrating roller compaction after surgical hours and/or on weekends, subject to City review and approval.
 - Use of alternate fill materials that require no or minimal induced compaction.

These methods would generate less vibration than a large vibrating roller compactor, possibly comparable to the vibration generated by a small bulldozer, which would typically generate a vibration level on the order of 58 VdB at a distance of 25 feet.

Conclusions

Anticipated vibration from construction activities for the MTV Project would not exceed the Category 1 criterion at the Surgery Center.

Pursuant to Standard Condition of Approval NOISE-6, WIA recommends that (1) the contractors implement the Construction Equipment Schedule elements described above and (2) vibration monitoring be conducted at the Surgery Center to document the baseline conditions during operations prior to construction and to monitor the vibration at the facilities during the key periods of construction that are subject to vibration to verify that construction-related vibration is not exceeding the FTA category 1 criterion. The key periods of construction would occur when the equipment discussed above are in operation (e.g., vibratory roller compactor, vibrating plate compactors, and/or jumping jack).

Please let us know if you have any questions on this information.

Very truly yours,

WILSON, IHRIG & ASSOCIATES, INC.

Deborah A. Jue Associate Principal

assure City that the Project will be developed within a reasonable time period, Developer shall complete each Phase in accordance with the Phasing Plan set forth below.

3.3.1 <u>City Right to Terminate Agreement</u>. City shall have the right to Terminate this Agreement by written notice to Developer if City determines that, if for any reason other than due to Force Majeure, despite such Developer's reasonable efforts and other factors, including market and economic conditions as of the time in question for the uses contemplated for the Project, appropriate mix of uses and use categories, return on investment and similar criteria, Developer has not complied with the Phasing Plan.

3.3.2 <u>Meet and Confer and Cure Period</u>. In the event of any alleged failure to comply with the Phasing Plan, City and Developer shall follow the notice, meet and confer and cure processes set forth in Article VIII. City's sole and exclusive remedy in the event of Developer's breach of its obligations under this Article 3 shall be to Terminate this Agreement; however, any such Termination shall not relieve Developer of obligations under this Agreement that survive Termination (such as Indemnity obligations), accrued obligations under this Agreement, and obligations to comply with City Approvals, Subsequent Approvals, Governmental Agency Approvals and other Laws.

3.3.3 <u>Phasing Plan</u>. The Phasing Plan for the Project is as follows and illustrated on Illustrative Exhibit D. To the extent there is a conflict or inconsistency between this section 3.3.3 and Illustrative Exhibit D, this section 3.3.3 shall prevail:

(a) Developer shall submit a Final Development Plan ("FDP") application for Phase 1, comprising the BART Garage, to be constructed on parcel E, site remediation, the BART Plaza improvements, Internal Drive, the Frontage Road improvements, and the portion of Village Drive that extends from the Frontage Road to the Internal Drive all as

shown on Exhibit C, Master Development Plan, no later than one year after the Adoption Date and shall make regular and consistent progress toward approval of the FDP within one year after the initial submittal date of the FDP application. Construction of Phase 1 shall Commence in Earnest within one year after approval of the FDP for Phase 1. The target outside approval date for the FDP shall be one year after the initial submittal date of the FDP application. In the event that approval of the FDP is not obtained by the target outside approval date, then the time for construction of Phase I to Commence in Earnest shall be extended one (1) day for each day after the target outside approval date until FDP approval is obtained. Developer's obligation with respect to Phase I shall be conditioned upon, and the above-referenced deadline for submittal of an FDP and Commencement in Earnest shall be extended until, satisfaction of the following conditions, all in accordance with the OPA: (i) execution of a ground lease by Developer and BART for the BART Garage, (ii) with respect to the obligations of Developer hereunder with respect to the BART Plaza only, execution of an agreement granting Developer the right to enter the BART Plaza and construct the Plaza improvements thereon; (iii) conveyance to Developer of a fee interest or right to enter and construct with respect to the property on which the roadway improvements described above are to be built, (iv) the award and disbursement of \$37,300,000 of the TOD Housing Program and the Infill Infrastructure Grant Program under California Proposition 1C, the Housing and Emergency Shelter Trust Fund Act of 2006 funds to the Project ("Prop 1C Funds") and, with respect to the obligations of Developer hereunder with respect to the BART Plaza, the award of funds sufficient to construct the BART Plaza improvements, and (v) the pass-through of the funds described in 3.3.3(a)(iv) to Developer in accordance with the OPA. Notwithstanding the foregoing, except in the event of Litigation Force Majeure, in no

event shall the above deadlines be extended for more than three (3) years for any reason, including, without limitation, Force Majeure other than Litigation Force Majeure

(b) Developer shall submit an FDP application for Phase 2, comprising the affordable rental development to be constructed on parcel D shown on Exhibit C, no later than three (3) years after the Adoption Date and shall make regular and consistent progress toward approval of the FDP within one year after the initial submittal date of the FDP application for Phase 2. Construction of Phase 2 shall Commence in Earnest within one year after approval of the FDP for Phase 2. The target outside approval date for the FDP shall be one year after the initial submittal of the Phase 2 FDP application. In the event that approval of the Phase 2 FDP is not obtained by the target outside approval date, then the time for construction of Phase 2 to Commence in Earnest shall be extended one (1) day for each day after the target outside approval date until Phase 2 FDP approval is obtained. Developer's obligation with respect to Phase 2, and the deadline for Commencement in Earnest of Phase 2 set forth above shall be extended until the earlier to occur of (i) execution by Developer and BART of a ground lease for parcel D and receipt by Developer of subsidy funds sufficient to construct Phase 2, in accordance with the OPA; or (ii) ten (10) years after the Adoption Date. In no event shall such ten (10) year deadline be extended for any reason including, without limitation, Force Majeure.

(c) Developer shall submit an FDP application for Phase 3, comprising the mixed-use market rate development to be constructed on parcel A shown on Exhibit C, including without limitation, the new hardscape public plaza along Frontage Drive in front of the building to be constructed on Parcel A as shown on Exhibit C, no later than three (3) years after the Adoption Date subject to a one-year extension at the reasonable request of Developer (if Developer reasonably believes that it is not Feasible to construct due to market

Final, Adopted by City Council 7/21/2009

conditions), and shall make regular and consistent progress toward approval of the FDP for Phase 3 within one year after the initial submittal date of the FDP application for Phase 3. Construction of Phase 3 shall Commence in Earnest within one year after approval of the Phase 3 FDP. The target outside approval date for the FDP shall be one year after the initial submittal date of the Phase 3 FDP application. In the event that approval of the Phase 3 FDP is not obtained by the target outside approval date, then the time for construction of Phase 3 to Commence in Earnest shall be extended one (1) day for each day after the target outside approval date until FDP approval is obtained.

(d) Developer shall submit an FDP application for Phase 4, comprising the mixed-use market rate development to be constructed on parcel B shown on Exhibit C, no later than eight (8) years after the Adoption Date, and shall make regular and consistent progress toward approval of the FDP for Phase 4 within one year after the initial submittal date of the Phase 4 FDP application. Construction of Phase 4 shall Commence in Earnest within one year after approval of the Phase 4 FDP. The target outside approval date for the FDP shall be one year after the initial submittal of the Phase 4 FDP application. In the event that approval of the FDP is not obtained by the target outside approval date, then the time for construction of Phase 4 to Commence in Earnest shall be extended one (1) day for each day after the target outside approval date until FDP approval is obtained.

(e) Developer shall submit an FDP application for Phase 5, comprising the mixed-use market rate development to be constructed on parcel C shown on Exhibit C, no later than 10 (ten) years after the Adoption Date and shall make regular and consistent progress toward approval of the FDP for Phase 5 within one year after the initial submittal date of the Phase 5 FDP application. Construction of Phase 5 shall Commence in

Final, Adopted by City Council 7/21/2009

Earnest within one year after approval of the Phase 5 FDP. The target outside approval date for the FDP shall be one year after the initial submittal of the Phase 5 FDP application. In the event that approval of the FDP is not obtained by the target outside approval date, then the time for construction of Phase 5 to Commence in Earnest shall be extended one (1) day for each day after the target outside approval date until FDP approval is obtained.

(f) Notwithstanding the timeframes set forth in subsections 3.3.3 (a) through (e) above, no target outside approval with respect to any Phase shall be extended unless Developer, with respect to such Phase, (i) uses reasonable good faith efforts to cause all FDP applications to comply with Section 17.140.040 of the City Planning Code; (ii) timely submits all FDP applications that contain all the requirements listed in of the City's Basic Application for Development Review, the City's Supplemental Submittal Requirements for a Planned Unit Development and Conditions of Approval related to the FDP (provided that in the event of Developer's failure to comply with this clause (ii), the extension of the target outside approval date will not be denied, but will be reduced by the number of days between the due date for the FDP application and the date upon which Developer submits an FDP application in compliance with this clause (ii)); and (iii) uses good faith efforts to make regular and consistent progress toward approval of the FDP, as evidenced by Developer's timely response to City's reasonable requests for information and meetings. If City does not believe Developer is eligible for any extensions of the target outside approval dates, or that any such extension should be shortened pursuant to (f)(ii), it shall immediately notify Developer in writing and initiate the dispute resolution procedures in Article VIII. Developer shall not be denied any such extension nor shall such extension be shortened absent such immediate written notice from City.

(g) If Agency does not issue the non-housing tax increment bonds and disburse the proceeds thereof to Developer in accordance with the OPA (by July 1, 2011), then all dates for submittal of complete FDP applications (other than the date for submittal of the FDP application for Phase I) and all dates for construction to Commencement in Earnest set forth in section 3.3.3 and the expiration of the Term of this Agreement shall be extended for a number of days equal to the number of days from July 1, 2011 until the Agency has issued such bonds and disbursed the proceeds thereof to Developer. If Agency fails to issue such bonds and disburse the proceeds thereof by July 1, 2014 and Developer exercises its right under the OPA to terminate the OPA, Developer shall also have the right to terminate this Agreement by written notice to City.

(h) Notwithstanding the timeframes set forth above, Developer shall, if feasible, make reasonable, good faith efforts to proceed with all phases as expeditiously as possible and to have full build-out of the Project be completed as early as possible.

(i) If, at the expiration of the Term, Developer has fully complied with the Phasing Schedule but construction of the Project is not complete, and notwithstanding the meet and confer process set forth above in Section 3.3.2, Developer shall be allowed to complete any Phase that Developer has Commenced in Earnest prior to the expiration of the Term pursuant to Section 2.4 of this Agreement.

3.4 <u>Development Sequence</u>. The foregoing five Phases may occur sequentially, however, they may also move forward concurrently, or, except for Phases 1 and 2, out of sequence, as conditions require in Developer's sole discretion. For example, Phase 4 could be the third Phase developed within the time prescribed above for development of Phase 3, and

EXHIBIT D (MacArthur Transit Village)

Illustrative Phasing Plan*

RELATIVE SCHEDULE	2009 Estimated Dates
	Bateo

CONTROLLING DATES

Α.	Discretionary Approvals for Entitlement	July -2008	
В.	OPA Executed & Approved	July -2009	
C.	Start Land Acquisition	August -2009	
D.	Complete Land Acquisition	TBD	

1. HORIZONTAL DEVELOPER

i.	Submit application for final development		
	plan approvals for Phase I	1 year after approval of OPA	July 2010
	Target Outside Approval Date	1 year after submittal of Phase I FDP	July 2011
ii.			
	Commence construction of Phase I	1 year after FDP approval	July 2012
iii.			
	Complete construction of Phase I	2 years after commencement of construction	July 2014

2. BELOW MARKET RATE HOUSING DEVELOPER

i.	Submit applications for final development plan for Phase II	3 years after approval of OPA	July 2012
	Target Outside Approval Date	1 year after submittal of Phase II FDP	July 2013
	Secure Affordable Housing funding commitments		July 2013
ii.	Commence construction of Phase II	1 year after FDP Approval	July 2014
iii.	Complete construction of Phase II	2 years after commencement of construction	July 2016

3. MARKET RATE DEVELOPER

	Stage 3		
i.	Submit application for final development plan approvals for Phase III	3 years after approval of OPA	July 2012
	Target Outside Approval Date	1 year after submittal of Phase III FDP	July 2013
ii	Commence construction of Phase III	1 year after FDP Approval [without extension]	July 2014
iii.	Complete construction of Phase III	2 years after commencement of construction	July 2016
	Stage 4		÷.
i.	Submit application for final development plan approvals for Phase IV	8 years after approval of OPA	July 2017
	Target Outside Approval Date	1 year after submittal of Phase IV FDP	July 2018
ii.	Commence construction of Phase IV	1 year after FDP Approval	July 2019
iii.	Complete construction of Phase IV	2 years after commencement of construction	July 2021
	Stage 5		
i.	Submit application for final development plan approvals for Phase V	10 years after approval of OPA	July 2019

		EXH	HIBIT A
	Target Outside Approval Date	1 year after submittal of Phase V FDP	July 2020
ii.	Commence construction of Phase V	1 year after FDP Approval	July 2021
iii.	Complete construction of Phase V	2 years after commencement of construction	July 2023

*This is an Illustrative Phasing Plan; see section 3.3.3 for controlling language.

EXHIBIT &

Holland & Knight

50 Calfornia Street, Suite 2800 | San Francisco, CA 94111 | T 415.743.6900 | F 415.743.6910 Holland & Knight LLP | www.hklaw.com

David L. Preiss (415) 743-6914 david preiss@hklaw.com

December 21, 2010

VIA E-MAIL AND U.S. MAIL

President Jane Brunner and Council Members City Council City of Oakland One Frank H. Ogawa Plaza Oakland, CA 94612

Re: MacArthur Transit Village Project ("Project") Surgery Center at 3875 Telegraph Avenue

Dear President Brunner and Council Members:

Our office was recently retained by Alta Bates Summit Medical Center Surgery Property Company LLC, The Surgery Center at Alta Bates Summit Medical Center, including Alta Bates Summit Medical Center, a Sutter Health affiliate, in connection with the above matter. Our clients are the ground lessee and operator of the Surgery Center located immediately adjacent to the Project at 3875 Telegraph Avenue. The purpose of this letter is to set forth our clients' concerns regarding significant impacts on the operations, services, and patient care at the Surgery Center resulting from the recent change in the Project to remove the Surgery Center property from the Project. Given these new significant impacts and the mandates of the California Environmental Quality Act (CEQA), we hereby request, on behalf of our clients, that the City Council defer its approval of the Project's Stage One Final Development Plan, Vesting Tentative Tract Map and any other entitlements until such new Project impacts on the Surgery Center can be adequately studied and mitigated in a Subsequent EIR for the modified Project.

The Project, as originally proposed and analyzed in the previously certified Environmental Impact Report (EIR), included the Surgery Center property (also referred to as a portion of "Block C") within the Project boundaries and development, including demolition of the Surgery Center and replacement with mixed use-residential and retail uses. However, it appears that the Project was recently changed to exclude the Surgery Center site from the Project.¹

1

1

¹ The documents prepared for City staff reports contain inconsistent Project descriptions. For example, as recently as November 3, 2010, the Surgery Center is listed as part of the Project by Assessors Parcel Number in the Planning Commission Staff Report and associated map. However, in that same November 3, 2010 Staff Report, a change to the Project is listed as not requiring the acquisition of 3875 Telegraph Avenue (the Surgery Center property). A key pillar of CEQA is a consistent project description. (County of Inyo v. City of Los Angeles (1977) 71 CA3d 185)

Atlanta | Bethesda | Boston | Chicago | Fort Lauderdale | Jacksonville | Lakeland | Los Angeles | Miami | New York Northern Virginia | Orlando | Portland | San Francisco | Tallahassee | Tampa | Washington, D.C. | West Palm Beach Abu Dhabi | Beijing | Mexico City #9977534

EXHIBIT &

President Jane Brunner and Council Members December 21, 2010 Page 2

It appears that neither the EIR nor any subsequent environmental analysis² has addressed the impacts on the Surgery Center as an ongoing operation because all along the environmental review for the Project has been premised on the Surgery Center being demolished during the course of the Project and no longer continuing operations. As discussed in the attached reports, the EIR does include an alternative which reduces the Project site to only include the parcels currently developed with the BART surface parking lots. Thus, under this alternative, the Surgery Center, along with other properties, was removed from the Project. However, the EIR did not analyze the Project's impacts on the properties removed from the Project.

When the Project proponents unilaterally, and without prior notice to our clients, removed the Surgery Center site from the Project, additional environmental review under CEQA should have been performed to analyze the Project's impacts on the continuing operations at the Surgery Center. The impacts from the Project that are of particular concern to our clients include, but are not necessarily limited to, noise, vibration, dust and diesel particulate matter.

The Surgery Center's operations, services, and patient care are uniquely sensitive receptors to such effects. The Surgery Center performs several sensitive surgeries including (i) approximately 50 neurosurgical procedures (laminectomics, nerve repairs) as well as ENT procedures (middle ear reconstructions, typanoplasties, myringotomics with tubes, microdirect larygoscopies with removal of vocal cord lesions) using an operating microscope, (ii) approximately 185 eye surgeries per year, and (iii) hand procedures and pediatric urology cases using surgical loops (glasses fitted with magnifying lenses for delicate surgery). The Surgery Center uses sensitive equipment including (i) Arthroscopy monitors that display surgical images used in at least 50% of surgeries, and (ii) X-ray imaging with C-arms (fluoroscopy units) which are used for all interventional pain cases (approximately 1,800 cases per year) and for surgeries.

The Project proponent's singular effort to address the removal of the Surgery Center property from the Project was summarily encapsulated in a footnote to the October 26, 2010 Memorandum from Art May, MacArthur Transit Community Partners, LLC (MTCP) to Catherine Payne, CEDA - Planning regarding Substantial Conformance with the PDP Approval. For the first time, that Memorandum acknowledges that the Surgery Center property will in fact be removed from the Project. In a footnote on page five of the Memorandum, the Project proponent dismisses the Project's impacts on the Surgery Center by concluding that:

At this time, the VTTM does not include the Surgery Center property because MTCP does not have control of these properties. It is expected that the VTTM will be amended to include these properties when MTCP retains site control. This 3

2

4

5

the Project is listed as not requiring the acquisition of 3875 Telegraph Avenue (the Surgery Center property). A key pillar of CEQA is a consistent project description. (County of Inyo v. City of Los Angeles (1977) 71 CA3d 185) ⁶ Such analysis appears to be comprised of a October 25, 2010 Memorandum from Lynette Dias, AICP to Catherine Payne, Planner regarding CEQA Compliance for MacArthur BART Transit Village Phase 1 FDP and Phase 3 Vesting Tentative Map; and a October 26, 2010 Memorandum from Art May, MTCP to Catherine Payne, CEDA-Planning regarding Substantial Conformance with the PDP Approval.

President Jane Brunner and Council Members December 21, 2010 Page 3

> circumstance does not preclude development of Phase I as the site development does no effect [sic] the Surgery Center parcel. [emphasis added.]

No basis is provided for this conclusion and there can be no such basis. To date, the record indicates that no environmental review has been performed to analyze and mitigate the particular impacts on the Surgery Center property resulting from its removal from the Project. Furthermore, the Memorandum incorrectly concludes that there will be "no change in the project site." (October 26, 2010 Memorandum, at p. 7)

The October 25, 2010 Memorandum from Lynette Dias, AICP to Catherine Payne, Planner regarding CEQA Compliance for MacArthur BART Transit Village Phase 1 FDP and Phase 1 Vesting Tentative Map, does not specifically mention or address the removal of the Surgery Center property from the Project. In fact, without any independent analysis, this CEQA Compliance Memorandum simply cites the October 26, 2010 Memorandum, discussed above, that there is "no change in the project site." (October 25, 2010 Memorandum, at p. 2)³

As set forth in the attached reports prepared by well-recognized experts,⁴ there are significant impacts resulting from the removal of the Surgery Center from the Project including, but not limited to:

- noise impacts on patients,
- · vibration impacts on sensitive medical operations and equipment, and
- dust and diesel particulate matter impacts on respiratory and cardiovascular patients uniquely sensitive to air pollution.

Furthermore, according to operating physicians at the Surgery Center, there are additional significant impacts including, but not limited to:

- dust contamination of sterile medical devices, and
- diesel particulate matter and fume impacts on patients and employees at the Surgery Center, including headaches and nausea.

These impacts on the Surgery Center are not limited to Phase I of the Project. These impacts will continue throughout the approximately seven (7) year build-out of the Project.

Under the clear mandates of CEQA, the City Council cannot approve the Project's Stage One Final Development Plan and Vesting Tentative Tract Map until a Subsequent EIR is prepared analyzing the impacts of the entire modified Project on the Surgery Center. Pursuant to CEQA, a Subsequent EIR is required: (i) when substantial changes are proposed in the Project with new 5 Cont.

³ The October 25, 2010 memorandum does reference the later October 26, 2010 memorandum.

⁴ December 21, 2010 Charles M. Salter Associates, Inc. Noise and Vibration Report; and December 21, 2010 Illingworth & Rodkin, Inc. Air Quality Report.

EXHIBIT &

President Jane Brunner and Council Members December 21, 2010 Page 4

significant environmental effects or a substantial increase in the severity of previously identified significant effects, (ii) substantial changes occur with respect to the circumstances under which the project is undertaken with new significant environmental effects or a substantial increase in the severity of previously identified significant effects, or (iii) new information of substantial importance shows that the project will have one or more significant effects, previously examined significant effects will be substantially more severe, previously rejected mitigation measures or alternatives are now feasible, or mitigation measures and alternatives which are considerably different than those previously analyzed. (CEQA Guidelines §15162(a))

Under these CEQA requirements, the removal of the Surgery Center property from the Project is a change in the Project that requires a Subsequent EIR.⁵ The new significant impacts described in the attached reports and summarized above constitute substantial evidence that clearly triggers the requirement for preparation, circulation, and certification of a Subsequent EIR. Even though only one of the three triggers for a Subsequent EIR must be met, the current situation actually meets all three triggers. The removal of the Surgery Center property is a substantial change to the Project with new significant environmental effects on the Surgery Center. Additionally, the continued operations of the Surgery Center adjacent to the Project is a substantial change with respect to the circumstances under which the Project is undertaken with new significant environmental effects on the Surgery Center. Furthermore, the new information that the Surgery Center property has been removed from the Project is of substantial importance and shows that the Project will have significant effects on the Surgery Center. (e.g., see *Concerned Citizens of Costa Mesa, Inc. v. 32nd Dist. Agric. Ass'n* (1986) 42 C3d 929, post-EIR changes to proposed project, including changes in the size of the site and orientation of the project, were sufficiently important to require evaluation in a Subsequent or Supplemental EIR.)

Therefore, under these circumstances, a Subsequent EIR is required to fully analyze and mitigate significant impacts on the Surgery Center before the City Council may approve the Project's Stage One Final Development Plan and Vesting Tentative Tract Map. The Subsequent EIR will require the same notice and public review periods as the Project's Draft EIR. (CEQA Guidelines §15162(d))

Additionally, with respect to the entitlements and the removal of the Surgery Center from the Project, given the removal of a significant portion of the Project site (a portion of Block C⁶), the Final Development Plan does not satisfy the City's requirement that final development plans "conform in all major respects" with the approved preliminary development plan. Similarly, the City cannot find that the Stage One Final Development Plan "conforms in all substantial respects" to the previously approved Preliminary Development Plan. (City Municipal Code §17,140.040, §17,140.060) Moreover, a planned unit development permit may only be granted if "the location, design, and size are such that the development can be well integrated with its surroundings, and, in the case of a departure in character from surrounding uses, that the location

7 Cont.

⁵ A Supplemental EIR is not appropriate in this situation because the changes to the Project are not minor. (CEQA Guidelines §15163).

⁶ Block C was planned and analyzed to include approximately 12,500 square feet of commercial space and 187 market-rate residential units and 8 affordable units.

President Jane Brunner and Council Members December 21, 2010 Page 5

and design will adequately reduce the impact of the development." (City Municipal Code §17.140.080) For reasons noted above, the location of the Project is not currently well integrated with its surroundings, which include the Surgery Center.

Also, the City Council cannot presently approve the currently proposed Vesting Tentative Tract Map because the Project is likely to cause serious public health and safety problems related to its significant impacts on patients at the Surgery Center. (City Municipal Code §16.08.030) As noted in the attached reports, the City of Oakland's standard conditions of approval applicable to the Project, standing alone, also are not adequate to address these unique impacts to the Surgery Center.

Thank you in advance for your consideration of these comments. In light of these concerns, we also reiterate our previous request for a continuance of your consideration of these newest entitlements until appropriate CEQA review can be completed. In the meantime, feel free to contact the undersigned or Stacey Wells of Alta Bates Summit Medical Center at (510) 869-8227.

Sincerely yours,

HOLLAND & KNIGHT LLP David L. Preiss

David L. Frei

DLP:s1

cc: Clerk of the City Council Catherine Payne, City Planner Mark Wald, Deputy City Attorney Arthur May, Keystone Development Group Joseph Forbes McCarthy, BUILD Clients

Attached: December 21, 2010 Charles M. Salter Associates, Inc. Noise and Vibration Report; and December 21, 2010 Illingworth & Rodkin, Inc. Air Quality Report.

ann1111234

9

Attachment A

JUNE Acoustics • Air Quality

Tel: 707-766-7700 www.illingworthrodkin.com Fax: 707-766-7790 illro@illingworthrodkin.com

December 21, 2010

Ed Erwin Director, Real Estate Alta Bates Summit Medical Center 2880 Gateway Oaks, 2nd Floor Sacramento, CA 95833

VIA E-Mail: David.Preiss@hklaw.com

SUBJECT: MacArthur Transit Village in Oakland, California - Comments on Air Quality Impacts to Surgery Center

Dear Mr. Erwin:

As you know, we were hired to determine whether recent changes to the MacArthur Transit Village project (Project) will have any significant air quality impacts on the property, operations and patient care at the Surgery Center of Alta Bates & Summit Medical Center located immediately adjacent to the Project at 3875 Telegraph Avenue (Surgery Center). We have concluded that the changes to the Project, that remove the Surgery Center property from the Project, will have such significant effects on the Surgery Center. These effects could last the entire duration of construction, estimated at approximately 7 years.

We reviewed recent changes to the Mac Arthur Transit Village Project that removed the Surgery Center from the planned development in regard to impacts associated with air quality. This included review of the Oakland City Staff Report for the December 14, 2010 Community and Economic Development Agency hearing regarding this project, specifically Attachment F (CEQA Memo)¹ and Attachment G (Conformance Memo)². The Draft Environmental Impact Report (DEIR) for the Mac Arthur BART Transit Village Project addressed air quality impacts from the project, assuming development of the entire project. Air quality impacts to the Surgery Center, which was formerly a portion of Block C of the project, were not addressed. The applicant is currently seeking approval from the City for the Stage 1 Final Development (FDP) and Vesting Tentative Tract map for the project. However, adequate review of the construction air quality impacts upon the Surgery Center from Stage 1 and the balance of the Project has not been conducted.

The 2008 DEIR evaluated air quality impacts associated with the proposed project. As part of this analysis, construction air quality impacts were addressed through the application of Conditions of Approval that identified generic dust control measures recommended by the Bay Area Air Quality Management District (BAAQMD). The DEIR air quality analysis did not identify any sensitive receptors

6

¹ Memorandum from Lynette Dias, AICP to Catherine Payne dated October 25, 2010. Re: CEQA Compliance for Mac Arthur BART Transit Village Phase I FDP and Phase I Vesting Tentative Map

² Memorandum from Art May MTCP to Catherine Payne dated October 26, 2010. Re: MacArthur Transit Village Project Phase I FDP and Vesting Tentative Tract Map – Substantial Conformance with the PDP Approval
Attachment A

Ed Erwin Alta Bates Summit Medical Center December 21, 2010 Page 2

adjacent to the project, since all sensitive receptors were buffered from the project. As a result, localized air quality impacts from construction equipment exhaust were not addressed. According to page 68 of the DEIR "Demolition and Construction Schedule," the Project will be constructed over approximately seven (7) years.

The proposed action would develop a portion of the site and realign internal roadways. As a result, the Surgery Center located at 3875 Telegraph Avenue would remain, but be immediately adjacent to the construction activities on two sides. As a result, dust and diesel equipment exhaust from construction activities would affect surgeries and patient care. The DEIR and CEQA evaluation for this current action did not identify the new construction air quality impacts that would affect the Surgery Center¹.

The proposed action would leave the Surgery Center immediately adjacent to construction activities associated with development of the project, as proposed in the current Phase I FDP and Phase I Vesting Tentative Map as well as the subsequent stages of the Project. The Surgery Center is considered a sensitive receptor, as it would fall under the category of a hospital. The Surgery Center includes patients who may be experiencing cardiovascular and respiratory distress as a result of procedures performed at the Surgery Center. As a result, some of these patients would be very sensitive to the impacts of air pollution. Construction activities that produce diesel exhaust and dust would occur adjacent to the facility. The DEIR, while not taking into account that construction activities would occur so close to a sensitive receptor, merely prescribed standard dust control measures as conditions of approval (pages 235 and 236 of the DEIR). The DEIR did not address local impacts of construction equipment exhaust to sensitive receptors. Pages 478 through 480 of the DEIR did address the Mitigated Reduced Building/Site Alternative (which reduced the Project site area to only include the parcels currently developed with the BART surface parking lots), but never assumed a sensitive receptor (i.e., the Surgery Center) would exist adjacent to the project construction. As a result, the air quality analysis for the alternative project concluded "the air quality impacts would be less than the proposed project." This conclusion is erroneous since the alternative where the Surgery Center remains in place throughout the life of the Project is a very sensitive receptor in close proximity to construction activities. Construction so close to the Surgery Center brings up two air quality issues: (1) acute impacts from increased dust and (2) acute impacts from increased exposure to diesel particulate matter.

The impacts from dust are merely addressed through standard conditions of approval that are meant to reduce dust through the application of generic dust control measures. These measures do not include any assurances that dust would be reduced to a level that would not result in significant exposures at the Surgery Center. Measure "d)" on page 235 would designate a person to monitor the dust control program, but there is no person that could suspend construction if the program is not working.

Although adverse effects of acute exposures to diesel particulate matter have been known since at least 2000, the DEIR or recent CEQA analysis for the project neglect to address these impacts to the adjacent Surgery Center. As reported by the BAAQMD³, "The vast majority of premature deaths associated with air pollution - more than 90% - are related to exposure to fine particulate matter (PM_{2.5}). Most of the deaths associated with PM_{2.5} are related to cardiovascular and respiratory problems." Sources of PM_{2.5} include dust and exhaust. A source of PM_{2.5} emission is from construction equipment and the dust

³ BAAQMD, 2010. Bay Area 2010 Clean Air Plan (page 1-17). September.

Attachment A

Ed Erwin Alta Bates Summit Medical Center December 21, 2010 Page 3

generated by demolition and grading activities. Surgery Center patients would be exposed to these emissions that were not addressed for the revised project.

In May 2010, the BAAQMD issued screening tables for evaluating impacts of air toxics during construction⁴. These guidelines identify screening distances for cancer and non-cancer risks. Cancer risks and PM_{2.9} exposures are based on chronic exposures. However, the tables also included minimum distances associated with acute exposures. For a construction of a commercial project ranging in size from 4.6 to 13.8 acres, these screening tables recommend a minimum buffer of 85 meters from the construction fence line. This would buffer the acute hazards posed by Acrolein, which is one of the most toxic TACs associated with diesel exhaust based on its non-cancer toxicity value. As previously mentioned, the Surgery Center would be located immediately adjacent to the construction site. It appears that there is a high potential for patients at the surgery center to be significantly exposed to TACs during construction, on an acute basis. This issue was not addressed in the DEIR or the subsequent environmental analysis for the proposed action. There are no mitigation measures or conditions of approval identified by the City to reduce these exposures. While the DEIR significance criteria identify "ground level concentrations of non-carcinogenic TACs such that the Hazard Index would be greater than 1 for the MEI" as significant, the DEIR or subsequent summary environmental analysis do not evaluate the potential for this effect.

Additional review of the air quality impacts to the Surgery Center is warranted along with the identification of mitigation measures to prevent significant impacts. Such mitigation measures may include, but are not limited to controls on equipment exhaust, limits on construction activities that coincide with surgeries, and identification of trigger levels that would suspend construction activities when emissions may adversely affect sensitive operations at the Surgery Center. In addition, BAAQMD recently identified suggested mitigation measures to reduce emissions of diesel equipment exhaust that they recommend for construction sites³. These should also be considered for the project.

. . .

This concludes our review of the air quality impacts to the Surgery Center at 3825 Telegraph near the planned Mac Arthur Transit Village in Oakland, CA. Please contact us if you have any further questions or concerns about this matter

ectfully

James A. Reyff Illingworth & Rodkin, Inc.

Attachment 1: Illingworth & Rodkin, Inc. Bio Attachment 2: Resume of James Reyff

10-171

⁴ BAAQMD, 2010. <u>Screening Tables for Air Toxics Evaluation During Construction</u>. May. ⁵ BAAQMD, 2010. <u>BAAQMD CEQA Air Quality Guidelines</u>, June.

9

EXHIBIT &

Attachment A

ILLINGWORTH & RODKIN, INC.

Attachment 1 Illingworth & Rodkin Bio

Tel: 707-766-7700 www.Illingworthrodkin.com Fax: 707-766-7790 illro@illingworthrodkin.com

AIR QUALITY

505 Petaluma Boulevard South

Petaluma, California 94952

In 1995 Illingworth & Rodkin, Inc. was expanded to include air quality and meteorological capabilities. The bulk of the firms' air quality work involves environmental air quality studies that are in support of both private and public projects. Air quality studies for land use projects to support Environmental Impact Reports are most common. Types of projects include specific plans for a variety of land use types, office centers, construction activities, wastewater treatment facilities, waste management facilities, quarries, and other industrial facilities. The firm also assists local communities in developing air quality policies for incorporation into General Plans.

For air quality, many projects involve the analysis of air quality impacts from both direct and indirect sources of air pollutants. Indirect sources include transportation facilities, which Illingworth & Rodkin's staff has considerable experience evaluating. Through years of conducting environmental noise and air quality studies for local, state and federal agencies, the firm has developed considerable experience in dealing with both the technical and policy issues involved with air quality. While transportation projects can involve considerable air quality technical aspects, the regulatory challenges can be quite complex. This is especially true in the case with federal projects, where SIP conformity issues arise. Illingworth & Rodkin Inc.'s staff have dealt successfully with these issues on a wide variety of projects ranging from large new freeway projects to simple urban intersection modifications. Conformity issues can be the largest hurdles for urban projects, especially those that involve federal action. Illingworth & Rodkin, Inc. has the right staff experience to tackle both the technical and regulatory air quality issues in both a quality and cost-effective manner.

The firm also conducts assessments to evaluate the air pathway health risk from common toxic air contaminants. This includes analysis of contaminants and PM_{2.5} from traffic and construction equipment as well as common stationary sources.

Environmental Studies

- Assessments for environmental studies (EIR, IS, EIS, EA)
- Transportation projects
- New residential developments
- Control plans and ordinances
- Ordinance compliance
- Conformity determinations
- Peer Review

Computer Modeling

- Air Pollutant emissions estimation using EMFAC2002, Mobile, AP-42

- Microscale air quality traffic modeling using CALINE4, CAL3QHC
- Stationary air pollution source modeling using EPA-approved models (e.g., SCREEN3 and ISCST)
- Analysis of meteorological data

Field Monitoring

- Aerometrics and Air toxics
- Meteorological conditions
- Fence line monitoring (e.g., particulates)

EXHIBIT &

Attachment A

ILLINGWORTH & RODKIN, INC.

Attachment 2 Resume of James Reyff

> Tel: 707-766-7700 www.Illingworthrodkin.com

505 Petaluma Boulevard South Petaluma, California 94952

Fax: 707-766-7790 illro@illingworthrodkin.com

JAMES A. REYFF

Mr. Reyff is a Meteorologist with expertise in the areas of air quality and acoustics. His expertise includes meteorology, air quality emissions estimation, transportation/land use air quality studies, air quality field studies, and environmental noise studies. He is familiar with federal, state and local air quality and noise regulations and has developed effective working relationships with many regulatory agencies.

During the past 22 years, Mr. Reyff has prepared Air Quality Technical Reports for over 10 major Caltrans highway projects and conducted over 100 air quality analysis for other land use development projects. These projects included carbon monoxide microscale analyses, the calculation of project emissions (e.g., ozone precursor pollutants, fine particulate matter, and diesel particulate matter), seasonal field monitoring, and preparation of air quality conformity determinations. Mr. Reyff advised decisions of federal and local air quality agencies regarding impact assessment methodologies and air quality conformity issues. He has conducted air quality evaluations for specific plans and General Plan updates. Recently, he prepared the air quality analysis for the NASA Ames Research Park, which included a Federal SIP Conformity analysis.

Mr. Reyff has been responsible for a variety of meteorological and air quality field investigations in support of air permitting and compliance determinations. He has conducted air quality analyses of diesel generators in support of regulatory permitting requirements and environmental compliance issues. Mr. Reyff has designed and implemented meteorological and air quality monitoring programs throughout the Western United States including Alaska. Programs include field investigations to characterize baseline levels of air toxics in rural areas, as well as regulatory air quality and meteorological monitoring. He was the Meteorologist involved in a long-term monitoring program at the Port of Oakland that evaluated meteorological conditions and fine particulate matter concentrations in neighborhoods adjacent to the Port.

Mr. Reyff has conducted over 15 major acoustical technical studies for transportation systems. He has managed several research studies for Caltrans including a noise study that evaluated long-range diffraction and reflection of traffic noise from sound walls under different meteorological conditions. Mr. Reyff has also evaluated noise from power plants, quarries and other industrial facilities. He has also been actively involved in research regarding underwater sound effects from construction on fish.

PROFESSIONAL EXPERIENCE

1995-Present Project Scientist 1989-1995 Project Meteorologist 1988-1989 Post Voyage Route Analyst

EDUCATION

1986 San Francisco State University

B.S., Major: Geoscience (Meteorology)

PROFESSIONAL SOCIETIES

American Meteorological Society

Illingworth & Rodkin, Inc. Petaluma, California Woodward-Clyde Consultants (URS) Oakland, California Oceanroutes (Weather News) Sunnyvale, California

Institute of Noise Control Engineering

AWARDS

FHWA Environmental Excellence Award - 2005 Caltrans Excellence in Transportation, Environment - 2005

t 2

Attachment B

FXHIBIT A

Charles M Salter Associates Inc

Accustos Acoustos Audicietus Telecommunicationa & Security Dystem Design

120 Sulter Street Sole 500 Sole 700 Celectia 54104 Tel. 415 197 0462 Fax. 415 197 0454 evw ornaater con info@creater con

Uniple 9. Series 75, Court P. Schweit, 7453 Rickel P. Actives, 7453 Rickel P. Actives, 7453 Rickel P. Actives, 745 21 December 2010

Ed Erwin Director, Real Estate Alta Bates Summit Medical Center 2880 Gateway Oaks, 2nd Floor Sacramento, CA 95833 Via E-mail: erwine@sutterhealth.org

Subject:

MacArthur Transit Village Project – Oakland, CA Potential Noise and Vibration Impacts on Surgery Center Located at 3875 Telegraph Avenue

Dear Mr. Erwin:

We have been retained to determine whether recent changes to the MacArthur Transit Village project (Project) will have any significant impacts on the property, operations and patient care at the Surgery Center of Alta Bates & Summit Medical Center located immediately adjacent to the Project at 3875 Telegraph Avenue (Surgery Center) particularly with respect to noise and vibration. We have concluded that the recently revised Project, that removes the Surgery Center property from the Project, will have such significant effects on the Surgery Center throughout the approximately seven (7) years of Project construction.

We have completed our review of the various documents prepared for the MacArthur Transit Village project located in Oakland, California. Included in our review is the Noise and Vibration section of the Draft Environmental Impact Report (DEIR) and the Agenda Report dated 14 December 2010 from the City of Oakland, City and Economic Development Agency (CEDA).

Based on our review, <u>potentially significant noise and vibration impacts</u> that could adversely affect The Surgery Center of Alta Bates & Summit Medical Center <u>have not</u> <u>been addressed</u>. Further analysis of project generated noise and vibration, impacts, and mitigation including continuous on-site noise and vibration monitoring, would be required. This letter summarizes our findings.

Attachment B

Ed Erwin 21 December 2010 Page 2

Discussion

Noise Impacts

As you know, the purpose of an EIR is to determine potentially significant impacts resulting from the development of the proposed project, and to provide mitigation measures as needed. We understand that since publication of the DEIR, the Surgery Center of Alta Bates & Summit Medical Center (a portion of "Block C" as shown on the DEIR Conceptual Site Plan, APN 012-0968-003-01 zoned C-28) will no longer be included in the Project. Therefore, the estimated seven years of continuous Project construction could generate significant impacts on the Surgery Center.

Our review of the City's Noise Element of the General Plan indicates that the City interprets a "Hospital" land-use as a noise sensitive receptor, "...whose purpose and function can be disrupted or jeopardized by noise... Understandably, noise is of special concern when it occurs near sensitive receptors." Moreover, the City classifies hospital land-uses among nursing homes, libraries, residences, classrooms, and theaters as being most sensitive to noise.

Based on our discussion with management at the Surgery Center, we conclude that activities at the Surgery Center would be just as sensitive to noise as those at a full-service hospital. The Surgery Center is home to sensitive procedures and patients undergoing nerve repair, ear reconstruction, eye surgery, neurosurgery (laminectomy), vocal cord surgery, and pediatric urology. Such procedures occur several hundred times per year. Post-anesthesia recovery, pre-operative, and pain management patients on cardiac monitors occupy various portions of the building including along the exterior façade adjacent to the project site. Specialized equipment such as arthroscopy monitors, fluoroscopy imaging units, and operating microscopes are in common use. Such activities appear to be consistent with the City's specification of hospital land-uses being noise sensitive. Without mitigation, increased noise levels generated by Project construction could adversely affect the health, sleep, and recovery of patients at the Surgery Center. It could also interfere with speech intelligibility and communication between patients and medical staff, and between surgeons and staff during medical procedures.

Vibration Impacts

The DEIR establishes the Federal Transit Administration (FTA) as a source for assessing potential vibration impacts.² Included are thresholds for significant impacts based on "events", the number of vibration occurrences per day. The thresholds are based on perception and annoyance in residential buildings which are of course one concern at the

² Federal Transit Administration, Transit Noise and Vibration Impact Assessment

(FTA-VA-90-1003-06), May 2006

Charles M Salter Associates Inc 130 Sutter Street San Francisco California 94104 Tal: 415 397 0442 Fax: 415 397 0454

¹ City of Oakland, Noise Element of the 2005 General Plan, p. 1

Attachment B

Ed Erwin 21 December 2010 Page 3

project site. In addition, the DEIR includes the FTA criteria for limiting potential building damage due to construction generated vibration. Had the Surgery Center site been listed as an adjacent sensitive receptor at the time of writing, it would have been required per CEQA to include the FTA recommended criteria for typical hospitals and/or hospitals with vibration sensitive equipment as shown in Table 1, below. An analysis methodology is provided in the same FTA document along with construction vibration levels and calculations to estimate vibration levels at various setback distances that could include the hospital.

Table 1 Ground-B	Adapted fro Sorne Vibra	m FTA Tables 8-1 an tion Impact Criteria	d 8-3)	
Land-Use	Category	Frequent Events	Occasional Events	Infrequent Events
Hospitals with vibration-sensitive equipment		65 VdB	65 VdB	65 VdB
Hospitals		72 VdB	75 VdB	80 VdB
Criterion		De	scription of Use	
72 VdB	Operating Rooms. Vibration not perceptible, but ground-borne noise may be audible inside quiet rooms. Suitable for medium-power optical microscopes (100X) and other equipment of low sensitivity.			
66 VdB	Adequate for medium- to high-power optical microscopes (400X), microbalances, optical balances, and similar specialized equipment.			
60 VdB	Sensitive operating rooms (e.g. microsurgery, eye surgery, neurosurgery, etc. ³). Adequate for high-power optical microscopes (1000X), inspection and lithography equipment to 3 micron line widths.			
54 VdB	Generic vibration specification for magnetic resonance imagers (MRI) ⁹ . Appropriate for most lithography and inspection equipment to 1 micron detail size.			
48 VdB	Suitable in most instances for the most demanding equipment, including electron microscopes operating to the limits of their capability.			
42 VdB	The most demanding criterion for extremely vibration-sensitive equipment.			

It is unclear at this time what methods will be used for demolition and construction. However, typical to construction of the proposed Project would include the use of pile driving, hydraulic breakers, drilled piers, rammed aggregate piers, vibratory compaction, or other methods that could generate significant impact at adjacent receptors. Vibration

Charles M Salter Associates Inc 130 Sutter Steart San Francisco California 54104 Tel: 415 397 0442 Fax: 415 397 0454

³ Amick, H., et al., Proceedings of International Society for Optical Engineering (SPIE), Vol. 1619, Design of Stiff, Low-Vibration Floor Structures, November 4-6, 1991, pp. 180-191.

Attachment B

Ed Erwin 21 December 2010 Page 4

levels generated by such devices and activities are summarized in the FTA document, but missing from any project analyses. Without mitigation, vibration levels generated by Project construction could adversely affect critical medical procedures at the Surgery Center. It could also be perceptible and annoying to recovering patients and staff, and interfere with the proper use of medical equipment including imaging systems and image quality.

Standard Conditions of Approval

The DEIR establishes the City of Oakland Planning Code, City of Oakland Municipal Code, City of Oakland Noise Element, and City of Oakland Standard and Uniformly Applied Conditions of Approval as sources for assessing potential noise impacts. Included in the City's codes are limits for average and maximum noise levels generated by construction activities that could affect adjacent land-uses. For reference, the DEIR lists them in the following Table 2 (adapted from Table IV.E-7):

Table 2: (Table IV.E-7) City of Oakland Constructi Noise Standards at Receivin (OMC Section 17.120.050)	on 1g Property Line, dBA	
	Daily 7am to 7pm	Weekends 9am to 8pm
Short-Term Operation (Les	s than 10 days)	10 E
Residential	80	65
Commercial, Industrial	85	70
Long-Term Operation (10 d	lays or more)	
Residential	65	55
Commercial, Industrial	70	60

The City's Condition of Approval (COA) Noise-1 also limits "extreme noise generating activities" to weekdays, 8am through 4pm. COA-5 continues to require noise measurements to monitor the effectiveness of noise attenuation procedures prepared under the supervision of a qualified acoustical consultant.

The Cumulative Noise and Vibration Impacts analysis in the DEIR also refers to the City of Oakland Standard and Uniformly Applied Conditions of Approval and projects within the vicinity of the project site. In particular, it cites the Kaiser Permanente project located at the intersection of MacArthur Boulevard and Broadway which has incorporated an

EXHIBIT @

Attachment B

Ed Erwin 21 December 2010 Page 5

on-site continuous noise monitoring program that allows a comparison of construction generated noise levels to project standards.

The City's Standard Conditions of Approval for noise and vibration alone do not adequately address the particular impacts on the Surgery Center. These Standard Conditions of Approval focus on typical uses, not highly sensitive receptors. For example, only COA-6 addresses vibration impacts, and does so by limiting the scope to damage thresholds at historic structures. It does not include other vibration sensitive uses such as the Surgery Center which is home to vibration sensitive patients and equipment. Additional study and analysis is necessary to determine the appropriate noise and vibration mitigation for the Surgery Center due to significant impacts generated by the Project.

DEIR Alternative

The DEIR provides the required section for analyzing project alternatives. Included is the scenario for a Mitigated Reduced Building/Site Alternative, which excludes the Surgery Center from being part of the project. To date, no analysis has been provided which evaluates potentially significant impacts at the Surgery Center generated by the Project. It is notably absent from the 14 December 2010 Agenda Report. Per CEQA, additional environmental review for project alternatives must be performed to address impacts that could affect surrounding land uses and provide mitigation measures as needed.

The Project Sponsor's Letter

The 26 October 2010 letter from MacArthur Transit Community Partners, LLC (MTCP – the project sponsor to Catherine Payne, CEDA - Planning), acknowledges that the vesting tentative tract map (VTTM) does not include the Surgery Center since MTCP does not have control of the property. The letter continues to state that the VTTM will be amended to include the Surgery Center once MTCP retains site control. It states, "This circumstance does not preclude development of Phase I as the site development does no effect [sic] the Surgery Center parcel."⁴ It appears that based on that assumption, the 17 November 2010 letter prepared by Urban Planning Partners Inc. (UPP – project planning consultant) concludes that refinements to the project are minor and that no substantial changes, circumstances, or new information of importance has been generated since certification of the EIR⁵ (June/July 2008). The aforementioned comments are not consistent with continued operation of the Surgery Center. It should also be noted that while a traffic consultant's comments were provided along with these two letters, we were not able to find a letter, quotation, summary, or follow-up analysis provided by a qualified firm providing services in acoustics.

Charles M Salter Associates Inc 130 Sutter Street Sen Francisco California 94104 Tet 415 397 0442 Fax: 415 397 0454

⁴ City of Oakland, Agenda Report, 14 December 2010 (oak024541.pdf), p. 344 ⁵ ibid, p. 334

Attachment B

Ed Erwin 21 December 2010 Page 6

Based on the project sponsor and planning team's oversight of an adjacent noise and vibration sensitive receptor (i.e., the Surgery Center), CEDA staff concludes in the 14 December 2010 Agenda Report there is nothing that would require subsequent or supplemental environmental review, since there are no new significant or substantial increases in the severity of environmental effects.⁶ Again, the conclusion is not based on an analysis that includes continued use of the Surgery Center.

Conclusion

In summary, the sources listed above which have been established as a basis for noise and vibration assessment and analysis, did not consider the Surgery Center as a noise and vibration sensitive receptor needing to be evaluated for potential impacts and mitigation. The modified Project without the Surgery Center will have significant noise and vibration impacts on the Surgery Center during the approximately seven (7) years of Project construction. Because no environmental study has been performed, per CEQA, further impact analysis is necessary to determine appropriate mitigation measures to protect the ongoing uses at the Surgery Center.

This concludes our current comments. Please do not hesitate to call us with any questions.

*

Sincerely,

Charles M. Salter Associates, Inc.

Timothy G. Brown Principal Consultant

Robert P. Alvarado Senior Vice President

6 ibid, p. 5

Charles M Salter Associates Inc 130 Sutter Street San Francisco: California 94104 Tet: 415 397 0442 Fax: 415 397 0454

EXHIBIT &

Attachment B

Charles M Salter Associates Inc.

CHARLES M. SALTER, P.E. President

PROFESSIONAL EXPERIENCE

Mr. Salter has practiced acoustical engineering for over 40 years. With educational backgrounds in architecture, planning, engineering, and business, Mr. Salter has conducted a wide range of consulting in the areas of architectural acoustics, noise control engineering, and environmental noise impact. He has had project responsibility for various facility types including offices, schools, churches, theaters, residences, hospitals, and civic buildings.

PUBLICATIONS

Coauthor ACOUSTICS: Architecture, Engineering, the Environment. (1998 William Stout Publisher)

HONORS

Fellow of the Society, Acoustical Society of America, 2006

Received "for contributions to the teaching of architectural acoustics and to its practical applications."

Allied Professions Honor Award, American Institute of Architects, California Council, 1998

Received "in recognition of unique dedication and focused drive to enhance, support and significantly contribute to the advancement of architectural practice. The extensive knowledge displayed as an acoustical consultant, author and educator creates an invaluable balance that bridges the language among various disciplines. The three decades as an innovator, practitioner and mentor, has been instrumental in increasing awareness of crucial acoustical considerations in architectural design. The level of personal commitment coupled with industrious contributions, merit the highest admiration from the profession of architecture."

TEACHING EXPERIENCE

2004-Present	Lecturer in Acoustics, UC Berkeley
2000-2004	Adjunct Professor, UC Berkeley
1998-2001	Adjunct Professor, California College of Arts & Crafts
1973-2000	Lecturer in Acoustics, UC Berkeley

PROFESSIONAL REGISTRATION

California: M.E. No. 16460 (1974) Nevada: M.E. No. 3963 (1974) Institute of Noise Control Engineering, Board Certified (1975)

PROFESSIONAL AFFILIATIONS

Associate Member, American Institute of Architects Technical Advisory Committee Member, United States Green Building Council

EDUCATION

Boston College M.B.A., Major - Finance, 1972 MIT B.S. Art and Design, Major - Architecture, Minor - City Planning, 1969 Tufts University B.S.C.E., Major - Structural Engineering, Minor - Economics, 1965

CALLER AND INTERACTION AND A DESCRIPTION OF THE PARTY OF

EXHIBIT @

Attachment B

Charles M Salter Associates Inc

ROBERT P. ALVARADO Senior Vice President

PROFESSIONAL EXPERIENCE

Mr. Alvarado has been an acoustical consultant with Charles M. Salter Associates, Inc. since 1996. He specializes in environmental noise studies, architectural acoustics, HVAC noise and vibration control, building vibration, and environmental noise mitigation. His experience includes exhibit spaces, civic facilities, mixed-use developments, offices, retail spaces, and educational facilities.

Mr. Alvarado's project management experience includes:

- John Muir Neuroscience Institute EIR, Walnut Creek, CA
- Kaiser Permanente Oakland EIR, Oakland, CA
- Queen of the Valley North Building EIR, Napa, CA
- Bay Meadows Mixed-Use EIR, San Mateo, CA
- Solana Beach Train Station Mixed-Use EIR, Solana Beach, CA
- Magnolia Park EIR, Oakley, CA
- Park and Delmas Residential Development EIR, San Jose, CA
- Marina Bay Live-Work Development EIR, Richmond, CA
- 150 Powell Street Mixed-Use, San Francisco, CA
- Santana Row Mixed-Use, San Jose, CA
- San Francisco Rock and Roll Hall of Fame Mixed-Use, San Francisco, CA
- Energy Foundation, San Francisco, CA
- Santa Cruz State Courts, Santa Cruz, CA
- Ferry Building Renovation, San Francisco, CA
- One, Two, and Three Embarcadero Center, San Francisco, CA
- Hilton Grand Vacation Club Flamingo Renovation, Las Vegas, NV
- Sea Ranch Lodge, Sea Ranch, CA
- Ritz-Carlton Marassi Mega Beach Resort, El Alamein, Egypt
- IDEO Corporate Offices, Palo Alto, CA
- Equity Office Properties, San Francisco, CA
- GSA Public Service Building, Oakland, CA
- Polaris Amphitheater, Columbus, OH
- Magic World Amphitheater, Dubai

PUBLICATIONS

Coauthor ACOUSTICS: Architecture, Engineering, the Environment. (1998 William Stout Publisher)

PROFESSIONAL AFFILIATIONS

American Institute of Architects, Associate Member UC Berkeley Center for the Built Environment, Research Team

EDUCATION

University of California at Berkeley, B.A. Architecture Stanford University, AEC Program, Graduate School of Engineering

TEACHING EXPERIENCE

1998-Present UC Berkeley, Guest Lecturer "Acoustic Computer Modeling"
1998-Present Stanford University, Graduate School of Engineering, Guest Lecturer, Professional Mentor

EXHIBIT &

Attachment B

Charles M Sailer Associates Inc.

TIMOTHY G. BROWN Principal Consultant

PROFESSIONAL EXPERIENCE

Mr. Brown has been an acoustical consultant with Charles M. Salter Associates, Inc. since 2004, He specializes in the areas of environmental and architectural acoustics and vibration. His projects include the testing and analysis of transportation and construction induced noise and vibration near public and private developments including residential, commercial, utility, medical, research, and technology facilities. He also has experience with noise and vibration relating to architectural, mechanical, electrical, and acoustically sensitive equipment.

Mr. Brown's experience includes the following projects:

- Daly City Noise Element Update, Daly City, CA
- San Francisco Recycling and Disposal Impact Assessment, San Francisco, CA
- Bay Meadows Redevelopment Noise and Vibration Assessment, San Mateo, CA
- New Crystal Springs Bypass Tunnel Noise and Vibration, San Mateo County, CA
- Kiernen Business Park EIR, Modesto, CA
- Villages of Patterson EIR, Patterson, CA
- Tivoli Specific Plan EIR, Modesto, CA
- Bay Division Pipeline No. 5 Noise and Vibration Study, Bay Area, CA
- San Francisco Recycling and Disposal Impact Assessment, San Francisco, CA
- United State Post Office, Oakland and San Francisco, CA
- Lockheed Martin Missiles and Space, Sunnyvale, CA
- Solana Beach Railway Station, Solana Beach, CA
- Fruitvale BART Station Emergency Engine Generator, Oakland, CA
- One Rincon Hill Construction Noise and Vibration Survey, San Francisco, CA
- Anchorage at Marina Bay Quiet Zone Implementation Assessment, Richmond, CA
- Sutter Health Camino Medical Group MRI Vibration Screening, Mountain View, CA
- Skywalker Ranch Screening Room Vibration Study, Nicasio, CA
- Pixar Animation Studios Construction Vibration Assessment, Emeryville, CA
- Livermore Performing Arts Center Noise and Vibration Assessment, Livermore, CA
- Stanford University Geophysics Laboratory Noise Study, Stanford, CA
- Gateway Community Development Project Railway Impact Analysis, Oakland, CA
- UC San Francisco MRI Vibration Study and Impact Assessment, San Francisco, CA
- Hellman Laboratory Relocation, Berkeley, CA

PROFESSIONAL AFFILIATIONS

Acoustical Society of America (ASA) Institute of Noise Control Engineers (INCE) Structural Engineers Association of Northern California (SEAONC) American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

EDUCATION

University of California, Berkeley, M.S., Civil Engineering, 2001 University of California, Davis, B.S. with High Honors, Civil Engineering, 2000

Summary of Negotiations with the Surgery Center

3/28/08	Meeting between MTCP and Victor Meinke (Alta Bates Surgery Center representative) about the MTV Project and acquisition of the Surgery Center site.	
7/1/08 -		
2/14/09	Various communications between MTCP and Victor Meinke and consultants regarding financial issues.	
4/21/09	Letter of Intent from MTCP to the Surgery Center regarding purchase.	
12/4/09	Meeting between MTCP and Surgery Center team.	
1/6/10	Letter from Alta Bates Summit to MTCP requesting updated plans and a new proposal.	
4/21/10	MTCPs' community meeting and presentation discussing the Phase/Stage 1 revised site design, garage plan, and development schedule. Meeting was attended by Surgery Center representative (Victor Meinke).	
6/2/10	Letter from MTCP to Alta Bates Summit including a copy of the revised site plan showing the Surgery Center site as part of the MTV Project. Letter noted that acquisition of Surgery Center would not be required for the Phase/Stage 1 development. Letter also noted MTCP is still interested in the property acquisition. (See Attached letter.)	
12/1/10	Meeting between MTCP (Art May & Joe McCarthy) and Alta Bates Summit (COO Charles Prosper and Dr. Glen Gormanzano) to discuss the status of the project, the plan revisions, schedule, and acquisition.	

June 2, 2010

Mr. Victor E. Meinke Vice President Business Development Alta Bates Summit Medical Center 350 Hawthorne Avenue Oakland CA 94609

Re: Project Update for MacArthur Transit Village

Dear Victor:

The purpose of this letter is provide you with a project update on MacArthur Transit Village Project ("MTV") in Oakland, Ca.

MacArthur Transit Community Partners, LLC ("MTCP") is proceeding with the design of the Bart replacement parking structure and master site work ("Phase 1") plus the acquisition of several parcels on MacArthur Boulevard and Telegraph Avenue which will facilitate the commencement of construction for Phase 1 in late 2010. The master site plan and design for the Bart replacement parking structure was reviewed by Oakland Design Review Committee on May 26, 2010 with our next review by the Oakland Planning Commission in late July 2010.

At our meeting on December 4, 2009, we realized it would be difficult to achieve a timely consensus to acquire the East Bay Surgery Center ("Surgery Center Property") from the various stakeholder of the EBOS, Sutter Health Alta Bates Summit Medical Center Surgery Property Company, LLC, and The Surgery Center of Alta Bates Summit Medical Center, LLC (collectively "Surgery Center") to facilitate our construction schedule. As a result, we have realigned Village Drive to intersect with the existing 39th Street at Telegraph Avenue which allows MTCP to proceed with the construction of Phase 1 with no requirement to acquire the Surgery Center Property which is now depicted as C-3 on the proposed Final Development Plan ("FDP"). We have attached for your information and review the proposed FDP for Phase I which modifies slightly the approved Preliminary Development Plan ("PDP").

The proposed FDP will allow the Surgery Center to continue its operations without any disruption to the Surgery Center Property. MTCP is still very interested in acquiring the Surgery Center Property at a purchase price and timing that will work for all parties. Please let us know if you have any questions regarding the proposed FDP.

EXEMPLE

Sincerely,

MACARTHUR TRANSIT COMMUNITY PARTNERS, LLC, a California limited liability company

By: MPI MacArthur, LLC, a California limited liability company, Member

By: ul

Terrence M. McGrath, Managing Member

- By: BUILD Equity Investments (MacArthur Transit Community) LLC, a California limited liability company, Managing Member
 - By: BRIDGE Urban Infill Land Development, LLC, a Delaware limited liability company, Member
 - By: BRIDGE Infill Development, Inc., a California Corporation, Manager

By: Lydia Tan, Executive Vice President

MTV - PHASE I & II CONSTRCUTION EQUIPMENT SCHEDULE SOUND - AIR QUALITY STUDY

January 28, 2011

DEMOLIT	DEMOLITION			
A Equipment		2000 Cat 330B Excavator		
Size		Approx. 80,000 Lbs		
	Engine	236HP		
	Usage:	Duration of project – 8 hours per day, – Possible overlap		
	CARB EIN #:	KC3V93		
В	Equipment	2005 Linkbelt 330 LX Excavator		
	Size	Approx. 80,000 Lbs		
	Engine	247 HP		
	Usage:	Duration of project – 8 hours per day, – Possible overlap		
	CARB EIN #:	GA5L83		
С	Equipment	2006 Bobcat S300 Skid steer		
	Size	Approx. 9,400 Lbs		
	Engine	Engine HP: 81 HP		
	Usage:	Duration of project – 8 hours per day, – Possible overlap		
	CARB EIN #:	UK4X33		
W	Equipment	STIHL - cut-off saw		
	Size	22 lbs		
	Engine	6.4 hp		
	Usage:	Cutting of steel and concrete sporadically		
	CARB EIN #:	UK4X33		
FOUNDATION				
D	Equipment	Xtreme XFR-1245 Telescoping Forklift		

D Equipment

		Size	35,700 lbs; lift capacity 12,000 lbs
Engine		Engine	2300 rpm
		Usage:	to unload piles - 2 hrs per day
		CARB EIN #:	XR1245020991378
	E	Equipment	Delmag RH26 (Requirement to RH28) mounted on Leiberbherr Carrier
	E	Equipment Size	Delmag RH26 (Requirement to RH28) mounted on Leiberbherr Carrier 182,000 lbs
	E	Equipment Size Engine	Delmag RH26 (Requirement to RH28) mounted on Leiberbherr Carrier 182,000 lbs 500 hp
	E	Equipment Size Engine Usage:	Delmag RH26 (Requirement to RH28) mounted on Leiberbherr Carrier 182,000 lbs 500 hp Duration of project - 8 hrs per day
	E	Equipment Size Engine Usage: CARB EIN #:	Delmag RH26 (Requirement to RH28) mounted on Leiberbherr Carrier 182,000 lbs 500 hp Duration of project - 8 hrs per day 567

EXHABITA

F	Equipment	210,000 ft lb Drill Head Motor; 70' Mast attached to Delmag
	Size	
	Engine	Hydraulic - runs off Delmag engine
	Usage:	Drill to install screw down Pile - 8 hrs per day
	CARB EIN #:	
AA	Equipment	McNeilus Ready-mix Concrete truck
	Size	10.5 cy capacity
	Engine	350 hp
	Usage:	transport ready mix concrete to jobsite - pour day
	CARB EIN #:	

GRADE BEAM/ PILE CAPS

G	Equipment	TEREX Back Hoe Loader
	Size	18,000 lbs
	Engine	100 hp (70 kw)
	Usage:	8 hours a day - overlap with Dump truck
	CARB EIN #:	

Н	Equipment	48 meter Putzmeister Boom Pump
	Size	48 meter boom - 12x8'-6"x40'
	Engine	2000 Diesel Mack - 400 Hp
	Usage:	Concrete placing - horizontal and vertical CIP concrete - 8 hrs per pour day
	CARB EIN #:	

J	Equipment	1999 Mack RD688S Tri-Axel Dump truck
	Size	44,000 lbs
	Engine	450 HP - diesel
	Usage:	Hauling of spoils
	CARB EIN #:	

VERTICAL CONCRETE

К	Equipment	Fork Lift - Hyster H80XL
	Size	8,000 lbs
	Engine	Propane
	Usage:	Moving of forms
	CARB EIN #:	
Q	Equipment	Delivery Stake Truck - F-450 Super Duty
	Size	16000 lbs

Engine 235 HP - Diesel Usage: Deliveries CARB EIN #:

5

Μ	Equipment	Ingersoll Rand Compressor
	Size	2,310 lbs
	Engine	80 HP
	Usage:	Blowing decks - chipping of concrete
	CARB EIN #:	

AB	Equipment	Cement Finisher - Multiquip
	Size	46 inch diameter
	Engine	8 hp
	Usage:	Finish concrete slabs
	CARB EIN #:	

EXTERIOR SKIN

Ν	Equipment Size Engine Usage: CARB EIN #:	HTC-8675 Series II Link Belt 75 ton hydro 12'x8'-6"x49'-0" - 85,276 lbs 445 HP diesel Hoist steel frames and precast on exterior
Р	Equipment Size Engine Usage: CARB EIN #:	JLG 600 series - 60 ft boom 60 ft boom - 24,000 lbs 82 HP - gas Installation of exterior screen - 8 hrs per day
Q	Equipment Size Engine Usage: CARB EIN #:	Delivery Stake Truck - F-450 Super Duty 16000 lbs 235 HP - Diesel Deliveries
X	Equipment Size Engine Usage: CARB EIN #:	Lincoln Commander 500 welder 12 kw diesel generator welding of precast panels and steel frames

MAN HOIST

R	Equipment	Pecco PH 6000
	Size	Car size - (5'x12-6"x9'0) - Mast 60 feet tall - total weight 20,000 lbs
	Engine	2-20 hp - 480 V- 3 phase - 60 hz
	Usage:	9 hours a day - 6 months
	CARB EIN #:	Electric motor

SITEWORK

S	Equipment Size Engine Usage: CARB EIN #:	Ditchwitch 1030 trencher 11 hp trench for irrigation water lines and control wires
Т	Equipment Size Engine Usage: CARB EIN #:	TEREX Back Hoe Loader 18,000 lbs 100 hp (70 kw) 8 hours a day - overlap with Dump truck
U	Equipment Size Engine Usage: CARB EIN #:	Hitachi Excavator - EX-550LC-5 125,200 lbs HP 361 Excavation of underground utilities
V	Equipment Size Engine Usage: CARB EIN #:	Dynapac (jumping jack) - LT7000 168 lbs 3.9 HP Compacting of trenches
W	Equipment Size Engine Usage: CARB EIN #:	STIHL - cut-off saw 22 lbs 6.4 hp Cutting of steel and concrete sporadically
Y	Equipment Size Engine Usage: CARB EIN #:	Concrete walk behind saw -EDCO SS-20 425 lbs 20 hp Cutting of concrete slabs and parking lot - 1 to 2 days
Z	Equipment Size Engine Usage: CARB EIN #:	SAKAI - dirt roller 7.2 tons 82 hp Dirt compactor - 8 hrs per day

EXHABITA

AC	Equipment Size Engine Usage: CARB EIN #:	John Deere Skip loader - 210LE 10,170 lbs - 1 CY 78 HP Move around dirt/ rock - make grade for pads
AD	Equipment Size Engine Usage: CARB EIN #:	Caterpillar grader - 140H 12'-14' blade - 32,460 lbs 185 HP Cut road grade for paving
AE	Equipment Size Engine Usage: CARB EIN #:	CAT 966F wheel loader 46,778 lbs - 4 cy bucket 220 HP Move dirt and rock
AF	Equipment Size Engine Usage: CARB EIN #:	Water truck - Sterling LT8500 4,000 gal - 53,220 lbs 450 HP dust control and wet down grade
AG	Equipment Size Engine Usage: CARB EIN #:	CAT D8R - diesel - Bull Dozer 80,000 lbs 305 HP Push large amount of dirt - used to spread dirt out at remediation
АН	Equipment Size Engine Usage: CARB EIN #:	CAT 1055D paver 45,130 lbs 224 HP - diesel Used to pave asphalt roads and parking lot

This schedule is a component of the Construction Management Plan required by the City of Oakland prior to the issuance of construction related permits

The construction technique proposed in areas adjacent to the Alta Bates Surgery Center may employ one or more of the following strategies

- 1. Use of sheep foot non-vibrating compactors
- 2. Use of non-vibrating roller compactors
- 3. Scheduling vibrating roller compaction after surgical hours or on weekends (subject to City approval)
- 4. Use of alternate fill materials that require no or minimal induced compaction
- 5. Use of smaller vibrating rolling, vibrating plate, or jumping jack compactors

EXHIBIT I

MacArthur Transit Village Construction Equipment Schedule

C1-101 C1-02																																						\parallel			++	+
1-02		tor					-	super Duty		2-5		CO SS-20	: truck	ш																			Management	issuance of				+			tor Evenuator	EXcavator
	cavator	LX Excava Skid steer	Forklift	Loader	truck	H80XL mpressor	ydro 0 ft boom	ick - F-450	encher Loader	- EX-550LC iack) - LT7	w er 500 weld	ind saw -ED	nix Concrete	Nutridup ader - 210L	- 140H oader	ing LT8500 - Bull Dozer																	Construction	d prior to the				+			t 330B Excav	UKDELL 2 2V LA
	at 330B Ex	inkbelt 330 sobcat S300	2 XFR-1245 g RH26	cad Motor X Back Hoe	Aack Dump	ift - Hyster	00 series - 6	ry Stake I ru PH 6000	ritch 1030 tr X Back Hoe	i Excavator	- cut-off sa	te walk beh	lus Ready-n	terre Skip lo	66F wheel I	truck - Sterl 8R - diesel	055 D paver	,															nponent of the	City of Oaklan ermits				+			2000 Ca 2005 Lir	2000 hit
	Y 2000 C	2005 I 2006 E	Xtreme	TERE	40 III01	Fork L Ingerse	DILG 6(Deliver Pecco	Ditchw TERE	Hitach	STIHL	Concre	McNei	John D	Caterp CAT 9	Water CAT D	CALT	av hour near	ix hour usage													_	nedule is a cor	puired by the 6 stion related p				+		KEY	× 8	2
-404	KE	m U		× 0 :		¥ 2 :		~ ∝	s F		> ×		- 4		AE	A A	¥	100%	50% m														This sc	Plan rei constru			_	+			+	
			hydrolic							gas	gas	gas		Spg																							_	+			+	_
- 450																																					_	+			++	
-900-7																																					_	+			+	_
																																					_	+			+	
-1000																																					_	+			+	
																																					_	+			+	
- 100 -																																						+				_
																			-	B - 70% C - 30%	W - 20% O - 40%	M - 10%															%		% 19%			_
7																		%															%	°	%	% ~ :	% G - 10	J - 5% D - 20 н - 10	H - 10 AA - 10 0 - 10	Ŷ	+	-
			_														,0	N - 100	k - 100%														G - 20	C -20% W - 55	V - 20	J - 20%	B - 50				-	-
1-220																	% P - 60%														%	%						+		,0		
															K - 30% H - 60%	A - 60% 2 - 55%	M - 10		_										%	%	AA - 35 C - 30	J - 25%					%	~ ~ ~	% %	G - 30		_
-100																													% AC - 60	Z - 50 ⁶ AD - 30							6 - 10	J - 5% D - 209	AA - 10 0 - 106	y		
1-dae 1																									%	B - 35% C - 35%	V - 35% V - 15%	2 - 10% A - 20%	AA - 10				G - 209	C -20%	V - 20%	J - 20%	B - 50.	+				
r-Snc												%005 - C	4 - 20%	% -20%									%	I - 25% Z - 80%	V - 10% AC - 80			• ~										+			<u> </u>	
s											3 - 95%	- 65%		Q - 30%									B - 100 Y - 5%															+			<u> </u>	
s 2 week											%																											+				-
2 week			.0					D - 80%	E -80% F - 80%	H - 20% X - 10%	AA - 10																											+			<u> </u>	
T-ABM			B AF - 50%	J - 25%	4.C - LIW	B - 40%	J - 50%	W - 5%																														\parallel				_
IIde			B AF - 50%	J - 50%																																						
E HIN	С	J - 50% W - 10%																																				\parallel			\parallel	
			liation								e Caps												ž						ks											llis		
olition			ental Remed		age	vork					Beams / Pil				al Concrete		vr Skin		loist	ž		oad	& Earthwo			5			& Sidewall				5				te			tation / Tre		Inc

350 FRANK OGAWA PLAZA 5TH FLOOR OAKLAND, CA 94612 510.251.8210 WWW.UP-PARTNERS.COM

MEMORANDUM

DATE: OCTOBER 25, 2010

To: Catherine Payne Planner III CEDA Planning and Zoning Division FROM: Lynette Dias, AICP Principal

RE: CEQA Compliance for MacArthur BART Transit Village Phase I FDP and Phase 1 Vesting Tentative Map

In accordance with the Conditions of Approval for the MacArthur Bart Transit Village Preliminary Planned Unit Development and the terms of the Development Agreement, the City is in receipt of an application for a Final Development Permit for Phase 1 (Phase 1 FDP), the parking structure, and a Vesting Tentative Map (VTM) for a portion of the site. The key purpose of this review is to determine whether the environmental effects of the Phase I FDP and VTM are adequately analyzed in the 2008 Certified Environmental Impact Report (EIR) prepared for the project. As described below, each of these approvals were considered in the EIR and as proposed would not result in new or more severe environmental impacts beyond those identified in the EIR. As a result, the City does not need to prepare a Subsequent or Supplemental EIR to satisfy the environmental review requirements of CEQA. This memorandum comprises adequate environmental documentation of the proposed Phase I FDP and VTM.

The discussion below summarizes the following items: (1) overview of project approvals and environmental review; (2) relationship of the proposed Phase 1 FDP and VTM with the approved Preliminary PUD/PDP and the project analyzed in the EIR; and (3) findings that the FDP and VTM fall within the scope of the EIR and do not trigger the conditions described in CEQA Guidelines Section 15162 calling for preparation of a subsequent or supplemental environmental review.

Project Approvals and Environmental Review

The City has taken several actions to review and plan for the future development of the MacArthur BART Transit Village. These include, without limitation: (1) certified an EIR, (SCH

d:\documents and settings\payne9c\my documents\macarthur transit village\phase i fdp\planning commission\attachment fl ceqa memo 102610.doc TO:Catherine PayneDATE:October 25, 2010PAGE:2

No. 2006022075) on July 1, 2008; (2) approved Ordinance No. 12883 C.M.S. amending Section 17.97.170 of the Oakland Planning Code related to the minimum usable open space requirements in the S-15 zone and rezoning the Project Site to S-15 Transit-Oriented Development Zone on July 1, 2008; (3) adopted and approved a Preliminary Planned Unit Development (Preliminary PUD/PDP) permit on July 1, 2008 to allow development of 624 to 675 residential units, 42,500 square feet of neighborhood-serving retail and commercial uses (including 7,000 square feet of live/work units), a 5,000 square feet community center use, and parking garage for BART patrons ; (4) adopted and approved a major conditional use permit to exceed parking requirements and to allow off-street parking for non-residential uses on July 1, 2008; (5) approved preliminary design review for the Preliminary PUD/PDP on July 1, 2008; and (6) approved Ordinance No. 12959 C.M.S on July 21, 2009 enacting a Development Agreement.

The Development Agreement and Preliminary PUD/PDP, which were both considered in the EIR, anticipate that the City will timely consider and possibly grant additional future approvals, including, without limitation, Final PUD (FDP) permits for each of the Project Phases, a vesting tentative map, final design review, tree removal, and conditional use permits.

Relationship of Phase I FDP and VTM to approved Preliminary PUD/PDP and certified EIR

The Phase 1 FDP and VTM applications dated October 26, 2010 have been reviewed and found to be in substantial conformance with: (1) the project evaluated in the EIR, (2) the approved Preliminary PUD/PDP and its Conditions of Approval, and (3) the terms of the Development Agreement. A summary of the relationship of these approvals relative to the Preliminary PUD/PDP approval and the certified EIR is provided below.

Relationship to approved Preliminary PUD/PDP

The attached Substantial Conformance with the PDP Approval Memo, dated October 26, 2010, regarding the Phase I FDP 's and the VTM's substantial conformance with the existing Preliminary PUD/PDP approval, details the clarifying and implementing project refinements that have been incorporated into the Phase I FDP and VTM submittal.

The analysis concludes that in all fundamental respects the project approved in the Preliminary PUD/PDP remains the same. The memo finds that there are no new or changed uses; no new facilities; no change in the overall residential unit count; no change in the amount of retail/commercial space; no change in community space; no change in the height or bulk controls; no change in the community benefits; no change in the project site; and no change in project phasing. The changes related to the BART garage and the site plan adjustments and refinements resulting from the larger garage (e.g., parcel adjustment, realignment of Internal Street) are related to implementation of the terms of the Draft TDMP included in the Preliminary PUD/PDP approval. The changes related to requirements imposed by City departments. The realignment of Village Drive is not precluded by any specific COA or Design Guideline. Additionally, none of the changes would violate the Development Agreement. The memo further concludes that the facts described in the memo and summarized above support a finding by the

TO: Catherine Payne DATE: October 25, 2010 PAGE: 3

City that the Phase I FDP and VTM, including the refinements summarized above and described in the attached memo, substantially conform to the Preliminary PUD/PDP and no Preliminary · PUD/PDP amendment is required.

Relationship to EIR

The Phase I FDP and VTM are within the scope of the project evaluated in the EIR and would not trigger any new significant or significantly greater impacts. The MacArthur Transit Village project analyzed in the certified EIR consisted of a new BART parking garage; improvements to the BART Plaza; up to 675 residential units (both market-rate and affordable); up to 44,000 square feet of commercial space (including live/work units); 5,000 square feet of community center or childcare space; approximately 1,000 structured parking spaces, including the 300 space BART parking garage; approximately 30-45 on-street parking spaces, pedestrian and bicycle friendly internal streets and walkways; improvements to the Frontage Road; a new internal street, Village Drive, located between Frontage Road and Telegraph Avenue; two new traffic signals at the intersections of Village Drive/Telegraph Avenue and West MacArthur Boulevard/Frontage Road; a rezoning of the Project site to S-15, and a text amendment to the S-15 zone. Multiple FDPs and subdivision maps were contemplated in the EIR (See Draft EIR, pages 72-74) to implement the Preliminary PUD/PDP.

The currently proposed development would provide up to 675 multi-family residential units, 42,500 square feet of commercial space and a 483 space parking garage. Key project refinements that are reflected in the Phase I FDP and VTM and described in the Preliminary PUD/PDP conformance memo include:

- BART Garage increasing the parking capacity of the BART garage and associated site plan changes
- Internal Street shifting alignment 40 feet to west, widening to street from 20 feet to 26 feet, eliminating on-street parking, widening pedestrian walkway, and adding an EVA connection to West MacArthur Boulevard
- Realigning Village Drive to line up with 39th Street

Fehr & Peers evaluated each of these transportation related refinements and confirmed that the refinements would not cause new significant impacts or a substantial increase in the severity of previously identified impacts, and the mitigation measures proposed in the EIR would continue to be valid (see Fehr & Peers Memo date October 8, 2010). The proposed changes would also not trigger any impact changes within the other environmental topics evaluated in the EIR.

Conclusion

As discussed above, the proposed Phase I FDP and VTM applications were considered in the EIR as they are in conformance with the approved Preliminary PUD/PDP. The refinements incorporated into the applications represent no change in development intensity or significant physical changes on the MacArthur Transit Village site from the project analyzed in the EIR. Therefore, these changes would not result in new or more significant impacts (or require new or significantly altered mitigation measures) beyond those already identified in the EIR. The EIR is adequate and no subsequent or supplemental environmental review.

TO: Catherine Payne DATE: October 25, 2010 PAGE: 4

The following discussion summarizes the reasons why no supplemental or subsequent CEQA review is necessary pursuant to *CEQA Guidelines* Section 15162 and the City can rely on the previously certified EIR.

<u>Substantial Changes to the Project</u>. The refinements to the project are minor and necessary to implement the Conditions of Approval of the Preliminary PUD/PDP as discussed in the Preliminary PUD/PDP substantial conformance memo and Traffic Memo. These changes would **not** result in new significant environmental impacts or a substantial increase in the severity of impacts already identified in the 2008 EIR. Therefore, the proposed changes to the project are considered *minor* refinements, not *substantial* changes.

<u>Project Circumstances</u>. Since certification of the EIR, conditions in and around the MacArthur Transit Village have not changed and thus implementation of the project (including the proposed refinements) would <u>not</u> result in new significant environmental effects or a substantial increase in the severity of environmental effects already identified in the 2008 EIR. No substantial changes in noise levels, air quality, traffic, or other conditions have occurred within and around the project site since certification of the EIR.

<u>New Information</u>. No new information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the 2008 EIR was certified, has been identified which is expected to result in: 1) new significant environmental effects or a substantial increase in the severity of environmental effects already identified in the EIR; or 2) mitigation measures or alternatives which were previously determined not to be feasible would in fact be feasible, or which are considerably different from those recommended in the 2008 EIR, and which would substantially reduce significant effects of the project, but the project applicant declines to adopt them.

As described previously, changes to the proposed project would not result in significant environmental effects (including effects that would be substantially more severe than impacts identified in the 2008 EIR). Existing regulations (including City General Plan policies and ordinances in the Municipal Code) and mitigation measures included in the 2008 EIR would be adequate to reduce the impacts resulting from implementation of changes to the proposed project to less-than-significant levels.

MEMORANDUM

Date: October 8, 2010

To: Catherine Payne, City of Oakland

From: Sam Tabibnia

Subject: MacArthur Transit Village Project – Comparison of the Current Development Plan and the Certified EIR

WC10-2717

Fehr & Peers has reviewed the latest site plan for the proposed MacArthur Transit Village dated June 30, 2010. Several elements in the most recent development plan have been modified since the *MacArthur Transit Village Draft ElR* (January 2008) was certified to implement various conditions of approval, mitigation measures, and City imposed requirements. Fehr & Peers completed a new analysis to determine if the proposed modifications could result in new significant impacts, or a substantial increase in the severity of previously identified impacts, and if the mitigation measures recommended in the EIR would continue to be valid.

The proposed Final Development Plan (FDP) would provide up to the same amount of residential units, and the same commercial space for the Transit Village as analyzed in the certified EIR. Access for the Transit Village and the BART Station would continue to be provided by Village Drive from both Telegraph Avenue and 40th Street. Access for the BART Garage would continue to be provided through Frontage Road at MacArthur Boulevard.

Although the overall project has not changed considerably, Fehr & Peers evaluated the potential impacts of the following project modifications on access and circulation for automobiles, buses, bicycles, pedestrians, and emergency vehicles:

- Realignment of intersection of Village Drive on Telegraph Avenue about 60 feet to the north.
- Increase in the number of parking spaces in the BART Garage from 300 spaces to about 483 spaces.
- Widening of the pedestrian path between Internal Street and West MacArthur Boulevard, which also accommodates emergency vehicle access.
- Removal of 18 on-street parking spaces on Internal Street

Based on our analysis, the proposed modifications would not change the conclusions of the EIR. The proposed modifications would not cause new significant impacts, or a substantial increase in the severity of previously identified impact, and the mitigation measures proposed in the EIR would continue to be valid.

The rest of this memorandum describes the evaluation of the modifications listed above.

October 08, 2010 Page 2 of 4

PROJECT DESCRIPTION

The MacArthur Transit Village project analyzed in the certified EIR consisted of 675 multi-family residential units and 49,000 square feet of commercial space. The currently proposed development would provide up to 675 multi-family residential units and 42,500 square feet of commercial space. The proposed development is estimated to generate fewer automobile trips and is expected to result in fewer significant impacts or reduce the magnitude of off-site traffic impacts identified in the EIR.

Similar to the project analyzed in the certified EIR, access for the Transit Village and the BART Station would continue to be provided by Village Drive from both Telegraph Avenue and 40th Street. Access for the BART Garage would continue to be provided through Frontage Road at MacArthur Boulevard. Thus, the proposed development would not modify access for automobiles, bicycles, pedestrians, buses, and emergency vehicles accessing the site. Therefore, the proposed development would not cause any additional impacts than identified in the EIR; the mitigation measures recommended in the EIR would continue to be valid.

REALIGNMENT OF VILLAGE DRIVE

In comparison to the EIR analysis, the latest design plans for the project would realign the intersection of Village Drive on Telegraph Avenue about 60 feet to the north, closer to the Telegraph Avenue/40th Street intersection. Fehr & Peers analyzed traffic operations, including intersection delay and Level of Service (LOS), at the two intersections most directly affected by the proposed realignment: Telegraph Avenue/40th Street and Telegraph Avenue/Village Drive.

Table 1 summarizes intersection delay and LOS at these two intersections under the scenarios studied in the EIR for both the EIR analysis and the new analysis with Village Drive realigned about 60 feet north. The Synchro traffic analysis files previously developed for the EIR were modified by moving the Telegraph Avenue/Village Drive intersection north by 60 feet. The analysis was completed for AM and PM peak hours under Existing Plus Project, Cumulative Year 2015 Baseline Plus Project, and Cumulative Year 2030 Baseline Plus Project conditions.

As shown in Table 1, both intersections would continue to operate at the same LOS with a slight increase in overall intersection delay if Village Drive is realigned north by 60 feet. The EIR identified a significant impact at the Telegraph Avenue/40th Street intersection (Impact TRANS-6) under Cumulative Year 2030 Baseline Plus Project conditions. Mitigation Measure TRANS-6, consisting of providing protected/permitted left-turn phasing on the eastbound and westbound 40th Street approaches, changing signal cycle lengths, and optimizing signal timing at the intersection, would mitigate the impact to a less-than-significant level. As shown in Table 1, this impact would continue to be significant if Village Drive is moved and the proposed mitigation measure would continue to mitigate the impact.

		INTE	T. RSECTIC	ABLE 1 ON LOS S	UMMAR	ſ			
			EIR An	alysis ¹		Vill	age Drive	e Realign	ed²
Scenario	Peak Hour	Telegra / 40 ^t	ph Ave. ⁿ St.	Telegra / Villag	ph Ave. e Drive	Telegra / 40 ^t	ph Ave. ⁿ St.	Telegra / Villag	ph Ave. e Drive
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
Existing Plus Project	AM PM	18.9 25.7	B C	15.7 8.1	B A	18.9 25.7	B C	16.2 8.1	B A
Cumulative Year 2015 Baseline Plus Project	AM PM	26.4 42.3	C D	10.1 17.2	B B	26.3 42.0	C D	14.1 17.6	B B
Cumulative Year 2030 Baseline Plus Project	AM PM	82.8 90.5	F	15.5 16.8	B B	82.5 90.9	F F	16.1 17.1	B B
Cumulative Year 2030 Baseline Plus Project Mitigated	AM PM	54.5 53.5	D D	9.3 8.3	A A	54.6 53.4	D D	9.4 8.2	A A

Notes: Bold values denote significant impacts.

1. Based on MacArthur Transit Village Project Draft Environmental Impact Report, January 2008.

2. Village Drive moved north by 60 feet. All other analysis parameters same as the EIR analysis.

Source: Fehr & Peers, 2008 and 2010.

Based on our analysis, the proposed realignment of Village Drive would not cause any new impacts, or a substantial increase in the severity of previously identified impacts, at the two studied intersections. The previously identified impact at Telegraph Avenue/40th Street intersection would continue to be significant and the mitigation measure identified in the EIR would continue to mitigate the impact. Thus, the proposed changes would remain consistent with the findings of the certified project EIR.

INCREASE IN THE NUMBER OF PARKING SPACES IN THE BART GARAGE

The current MacArthur BART Station parking lot provides 618 parking spaces. The project as analyzed in the EIR would have reduced the number of parking spaces to about 300 spaces. Although the project would have reduced the number of parking spaces available for BART riders by 318 spaces, the traffic impact analysis conservatively assumed that the BART parking garage would continue to generate the same amount of AM and PM peak hour vehicle trips as existing conditions in order to present a "worst case" analysis (Draft EIR pages 172 and 173). However, all BART generated trips were reassigned to the new garage to account for the existing BART parking lot driveways that would be eliminated.

The current FDP would increase the number of parking spaces in the BART garage to 483 spaces (including 33 spaces dedicated to non-BART uses). The BART garage would continue to provide fewer spaces than current conditions. Thus, the EIR analysis and findings, which were based on the current number of parking spaces for BART riders, would continue to be valid, and

the proposed modifications would not cause new significant impacts or a substantial increase in the severity of the previously identified impacts.

WIDENING OF PEDESTRIAN PATH BETWEEN INTERNAL STREET AND WEST MACARTHUR BOULEVARD

Internal Street would remain a cul-de-sac. Due to the redesign of the BART Garage, the current FDP would widen the pedestrian path connecting Internal Street and West MacArthur Boulevard to 26 feet. This would allow the pedestrian path to also serve as emergency vehicle access. Movable bollard would limit vehicular access on the pedestrian path.

The proposed pedestrian path widening would improve pedestrian connection to the south and enhance emergency access for the project. It would not cause any new impacts, or a substantial increase in the severity of previously identified impacts,

REMOVAL OF ON-STREET PARKING ON INTERNAL STREET

The EIR analysis assumed that Village Drive and Internal Street combined would provide up to 45 on-street parking spaces. These spaces would primarily be used by shoppers for the commercial component of the project and visitors to the residential component of the project. The current FDP proposes to remove 18 on-street parking spaces on Internal Street to provide adequate width to accommodate the Fire Services Department requirements. However, The redesigned BART garage would provide 33 spaces dedicated for non-BART uses which would replace the 18 parking spaces removed on Internal Street. Thus, the current FDP would result in 15 additional short-term parking spaces.

Although the EIR analyzed parking as a non-CEQA issue, it identified parking deficit for short term parkers (i.e., visitor and guest parking). The current FDP would provide more short-term parking spaces than the project analyzed for the EIR. However, the project would continue to have a deficit for short-term parking. Although the magnitude of the deficit would be reduced.

CONCLUSIONS

Based on our evaluation as documented above, the proposed modifications would not change the conclusions of the EIR. The proposed modifications would not cause new impacts, or a substantial increase in the severity of previously identified impacts, and the mitigation measures proposed in the EIR would continue to be valid.

Please contact us with questions or comments.

EXHIBIT I

MacArthur Transit Village Construction Equipment Schedule

1/28/2011

Tested Teste	pe	Tested							
Mar-11 Apr-11 May-11 Jun-1	11 Jul-11 Aug-11	Sep-11 Oct-11 Nov-1	Dec-11 Ja	n-12 Feb-12 M	ar-12 Apr-12 Ma	/-12 Jun-12 Jul-12	Aug-12 Sep-12	Oct-12 Nov-12 I	oc-12 Jan-13 Feb-13 Mar-13
		M -10%							G TEREX Back Hoe Loader
		0/07 - f							H 48 meter Putzmetster Boom Pump
		D - 2076							J 1999 Mack Dump truck
		B - 33%							L FOIK LITT - Hyster Houze
		C = 23%0							M Ingersolt Kand Compressor
		0/02 - A							N Link Bett / 5 ton nydro
		0 100/ 0 100/							Politone Steles - 00 IL 000II
		M = 20%							Becco PH 60.00
		AA - 10	9						S Ditchwitch 1030 trencher
Concrete			G - 10%						T TEREX Back Hoe Loader
			J - 5%						U Hitachi Excavator - EX-550LC-5
			D - 20%					se	V Damac (immin c iach) - I T7000
			H - 10%					360	W CTIHI - out-off eavy
			A A - 10%					eng	V I finoln Commandar 500 waldar
			0/01-10/0						V C P TAINOIL COILINAIRAEI 200 WORKEI
			Q - 10%					gas	Y Concrete walk behind saw -EDCU 55-
Finishes			2	- 50%					2 SAKAI - dirt roller
ernal & Village									AA MCNellus Keady-mix Concrete truck
Earthwork					B - 80%			gas	AB Cement Finisher - Multiquip
					Y -10%				AC John Deere Skip loader - 210LE
					J - 60%				AD Caterpillar grader - 140H
					Z - 80%				AE CAT 966F wheel loader
					W - 10%				AF Water truck - Sterling LT8500
Utilities					_			B - 50%	AG CAT D8R - diesel - Bull Dozer
								C - 50%	AH CAT 1055D naver
								V - 50%	
								W - 10%	
								5 - 10/0	
								B - 20%	
								Q - 10%	
								M - 10%	
								AA - 5%	
Paving & Sidewalks								AC	C - 20%
								Z	- 20%
								IN) - 10%
								A.	A - 20%
								C	: - 20%
Finishes									
DGE		-	2	3 4	5 6 7	8 9	10 11	12 13	14 15 16 17
Earthwork		A - 50%							
		AF - 50	10						
		AF - 50	>						
		2002 1							
		2 - 3%							
Shoring		E - 3%							
		F - 5%							
Concrete			G - 25%						
			D - 25%						
			L - 20%					-	
Concrete pour days (10 pour days)			Schwing boo	3m pump - 10%					
			7(0)	VB - 5%					
			Reed C-50HPF	num & 375 cfm					
			V V V	200%					
-			WW	- 20/02		2.00			
Kougn Framing						n (7)			
						(6) nail compressors			
						(12) skilsaws			
						(1) chain saw			
						L - 50%			
Drvwall / Plaster								D	
								multinle screw mus	
								Trailar plastar minne (35	HD/
Interior Einishes								and sound sound sounts	Documatic nail muse
									Darrow milita and
									Power mire saw
									Screw guns
Sitework	_	_							

EXHIBIT A