OFFICE (1) - CLERY OAKLAND CITY COUNCIL	
RESOLUTION NO. DRAFT C.M.S. 2006 NOT 30 FH 5: 28 Introduced by Councilmember	City Attorney

A RESOLUTION ESTABLISHING A TRAFFIC IMPACT FEE (TIF) PURSUANT TO ADOTION AND IMPLEMENTATION OF THE TRAFFIC IMPACT PROGRAM (TIP) FOR THE SOUTHEASTERN PORTION OF THE CITY OF OAKLAND, INCLUDING THE ADOPTION AND IMPOSITION OF TRAFFIC IMPACT FEES (TIF) AND DESIGNATED PROJECTS FOR FY 2007-09

WHEREAS, the purpose of this implementing resolution is to establish the amount of Traffic Impact Fee (TIF) to be imposed upon development projects within the city of Oakland, for the purpose of mitigating the impacts caused by development upon the City's traffic and transportation infrastructure and facilities; and

WHEREAS, the City is authorized to adopt and impose traffic impact fees upon development projects pursuant to article XI, section 7 of the California Constitutions; California Government Code sections 66000, et seq (hereinafter "Mitigation Fee Act"); and

WHEREAS, Oakland Municipal Code (OMC) Title X, Chapter 70, titled Traffic Impact Program has been adopted by the City to establish the procedures by which the City charges the traffic impact fee; and

WHEREAS, condition No. 26 and Settlement Agreement of the Leona Quarry development project, as outlined in Resolution No. 78358 C.M.S. (Resolution approving the application of the DeSilva Group to close the Leona Quarry, and reclaim it and redevelop the site for 477 residential units at 7100 Mountain Boulevard in compliance with Alameda Superior Court order [Action No. RG-03077607)] requires the establishment of a Traffic Impact Fee and Traffic Impact Fee; and

WHEREAS, pursuant to the California Environmental Quality Act (CEQA) on February 17, 2004, by Resolution 78359, the City certified an Environmental Impact Report (EIR) which adequately analyzed the impacts of the improvements contemplated by this Resolution, including the creation of fee programs to require new development in the Southeast area of Oakland to fund their proportional fair share of the cost of acquiring and improving public facilities, including traffic and transportation improvements; and

WHEREAS, Fehr & Peers Associates has prepared a transportation impact fee study dated September 2006 (Nexus Report), attached as Exhibit A, and hereby incorporated by reference, that provides the technical basis for implementation of a TIF and TIP in the Southeast Oakland area documenting the analytical approach for determining the nexus between the cost of improvements and the local traffic impact created by anticipated development in the Southeast Oakland area along with a traffic and fair-share cost analysis conducted to equitably distribute the costs of the necessary improvements to development that causes the impacts, per the provisions of the Mitigation Fee Act; and

WHEREAS, in accordance with Government Code section 66016, at least 14 days prior to the public hearing at which the City Council first considered the adoption of this Resolution, notice of time and place of the hearing was mailed to eligible interested parties; and

WHEREAS, in accordance with Government Code section 66016, the Nexus Report was available for public review and comment for 10 days prior to the public hearing at which the City Council first considered the adoption of the this Resolution; and

WHEREAS, ten (10) days advance notice of the public hearing at which the City Council first considered the adoption of this Resolution was given by publication in accordance with Section 6062(a) of the Government Code; and

WHEREAS; the record establishes and the City Council finds as follows:

- 1. That the purpose of the TIF set forth in this Resolution is to mitigate the traffic impacts of new development within the study area, by developing an overall transportation system that will accommodate the expected future traffic demand.
- 2. That the revenues from the Southeast Oakland TIF and TIP will be used to used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. These projects include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area.
- 3. There is a reasonable relationship between the fee's use and the type of development generate traffic with different characteristics and the nexus analysis presented in the technical study accounts for the differential impact on the local street system caused by different development types.
- 4. That there is a reasonable relationship between the need for the facilities and the type of development on which the fee is imposed by determining that implementation of the improvements would return the traffic operations at the affected intersections to within the City's standards and that there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for improvements at these locations is attributable to traffic generated by new development.
- 5. That there is a reasonable relationship between the amount of the fee and the cost of the public facility to ensure that all reasonably anticipated cost elements have been accounted for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs are then distributed among the different development types in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category. now, therefore be it

RESOLVED: that the city hereby finds that the facts set forth in recitals to this implementing resolution are true and correct, and establish the factual basis for the adoption of the Traffic Impact Fee (TIF); and be it

FURTHER RESOLVED: that the City Council hereby finds that the facts and analyses described in the report titled "Southeast Oakland Traffic Improvement Fee Study" (Exhibit A), including all technical reports incorporated by reference satisfy the requirements of the Mitigation Fee Act; and be it

FURTHER RESOLVED: that the City Council hereby adopts the Traffic Impact Fee for each identified land use category identified in Exhibit A as follows:

TABLE 1 PRELIMINARY SOUTHEAST OAKLAND TIF AND TIP FEE CALCULATIONS					
Land Use Category	Fee/Unit				
Single-Family Residential	\$3,160/Unit				
Other Residential	\$2,440/Unit				
Retail	\$5.89/Square Foot				
Service	\$3.12/Square Foot				
Manufacturing \$1.44/Square Foot					
Source: Fehr & Peers, 2006.					

; and be it

FURTHER RESOLVED: that the City Council hereby adopts the following Traffic Impact Fee project and cost estimates as follows:

TABLE 2					
COST ESTIMATES FOR SOUTHEAST OAKLAND TIF/TIP IMPROVEMENTS					
Location Cost Estimate					
1 and 2. I-580 WB On-Ramp/Edwards Avenue and	\$961,300				
I-580 EB Off-Ramp/Edwards Avenue					
4. Greenly Drive/Edwards Avenue	\$107,800				
6. MacArthur Boulevard/73 rd Avenue	\$622,300				
7. Mountain Boulevard/Keller Avenue	\$823,200				
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	\$409,100				
9. I-580 EB Off-Ramp/Keller Avenue	\$411,400				
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	\$757,000				
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue \$417,600					
A. Study of Edwards Avenue and Seminary Avenue operational improvements	\$350,000				
Total Cost of Improvements	\$4,859,700				

; and be it

FURTHER RESOLVED: that as funding is collected and/or allocated for each of the projects listed for the TIF, the Development Director will submit projects to the City Council for their approval through the Capital Improvement Program (CIP) budget process, under the heading of Traffic Impact Program projects; and be it

FURTHER RESOLVED: that the Development Director my move funds between individual TIF projects already approved by the City Council without the need for additional Council authorization to ensure the most effective and efficient implementation timeline for each of the traffic impact program projects; and be it

FURTHER RESOLVED: that any projects that has acquired or will acquire a vested right to develop under California law prior to the enactment of this resolution shall not be required to pay the TIF; and be it

FURTHER RESOLVED: that the fees established by this resolution shall become effective 60 days following its enactment contingent upon the adoption of the enabling ordinance Title 10 Vehicles And Traffic, Chapter 70 Southeast Oakland Area Traffic Impact Fee

	LaTonda Simmons City Clerk and Clerk of the Council of the City of Oakland, California	_
ABSTENTION -	ATTEST: DRAFT	
ABSENT -		
NOES -		
AYES - BROOKS, BRUNNER, CHANG, KERNIGHAN, NADEL,	, QUAN, REID, and PRESIDENT DE LA FUEN	ΤE
PASSED BY THE FOLLOWING VOTE:		
IN COUNCIL, OAKLAND, CALIFORNIA,	, 20	

Final Draft Report

Southeast Oakland Traffic Improvement Fee Study

September 2006

Prepared for: City of Oakland

TABLE OF CONTENTS

1.	Introduction	4
	Background	4
	Purpose	. 4
	Use of the Traffic Mitigation Fee	. 4
	Study Area	5
	Study Process	5
	Organization of the Report	5
2.	The Proposed Fee Program	7
3.	Analysis Methods and Results	9
_		
4.	Findings	. 17

APPENDICES

Appendix A: Summary of Fee Programs in Other Jurisdictions

Appendix B: TIF and TIP Area and Land Use Projections

Appendix C: Description of Edwards/Seminary Corridor Study

Appendix D: Detailed Traffic Level of Service Analysis Worksheets

Appendix E: Project Cost Estimates

LIST OF FIGURES

Figure 1	Study Area	6
Figure 2	Southeast Oakland Traffic Improvement Fee Projects	8

LIST OF TABLES

Table 1	Existing Conditions Peak Hour Intersection Levels of Service	10
Table 2	Southeast Oakland TIF and TIP Project List	11
Table 3	Future Peak Hour Intersection Levels of Service Without and With Mitigation	12
Table 4	Cost Estimates for Southeast Oakland TIF/TIP Improvements	13
Table 5	Southeast Oakland TIF and TIP Area Housing and Employment Projections	15
Table 6	DUE Conversion Factors	15
Table 7	Growth Converted to DUEs	16
Table 8	Preliminary Southeast Oakland TIF and TIP Fee Calculations	16

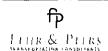
1. INTRODUCTION

BACKGROUND

Pursuant to the *Mitigation Fee Act*, California Government Code Section 66000, et seq. (also known as AB 1600), a local agency is authorized to charge a fee to development applicants in connection with approval of a development project for the purpose of defraying all or a portion of the costs of public facilities related to the development project. The capital improvements funded through a fee program are typically those required to mitigate the traffic impacts of new development within the study area. Specifically, the purpose of the fee is to maintain adequate level of service standards at intersections throughout the study area. The fee is not imposed to improve or correct deficiencies in baseline service levels, or to mitigate the impacts of regional (through) traffic.

Transportation impact fees are commonly collected in many jurisdictions in the Bay Area and throughout California to aid in financing transportation infrastructure required by new development. Currently, the City of Oakland does not collect transportation-related impact fees for new developments. For comparison and reference purposes, Appendix A includes a summary of impact fee programs in a selection of northern California cities.

PURPOSE


The purpose of this study is to provide the technical basis for implementation of a Traffic Improvement Fee (TIF) and Traffic Improvement Program (TIP) in the Southeast Oakland area. The TIF and TIP will constitute a funding mechanism for traffic improvements required to mitigate cumulative traffic impacts in the Southeast Oakland area, as documented in the Leona Quarry Environmental Impact Report. Development of a TIF and TIP is required as part of the Conditions of Approval (see Condition #26) for the Leona Quarry project, and is also addressed in the Leona Quarry Settlement Agreement executed in December 2003.

This report documents the analytical approach for determining the nexus between the cost of improvements and the local traffic impact created by anticipated development in the Southeast Oakland area. A traffic and fair-share cost analysis is conducted to equitably distribute the costs of the necessary improvements to development that causes the impacts, per the provisions of AB 1600.

USE OF THE TRAFFIC MITIGATION FEE

AB 1600 requires that mitigation fee programs comply with certain basic requirements, including:

- · Identifying the purpose of the fee
- Identifying how the fee will be used and the facilities to be funded through the fee
- Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed

- Determining a reasonable relationship between the need for the public facility and the type of development on which the fee is imposed
- Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development

These items are addressed throughout this study and are summarized in the final chapter.

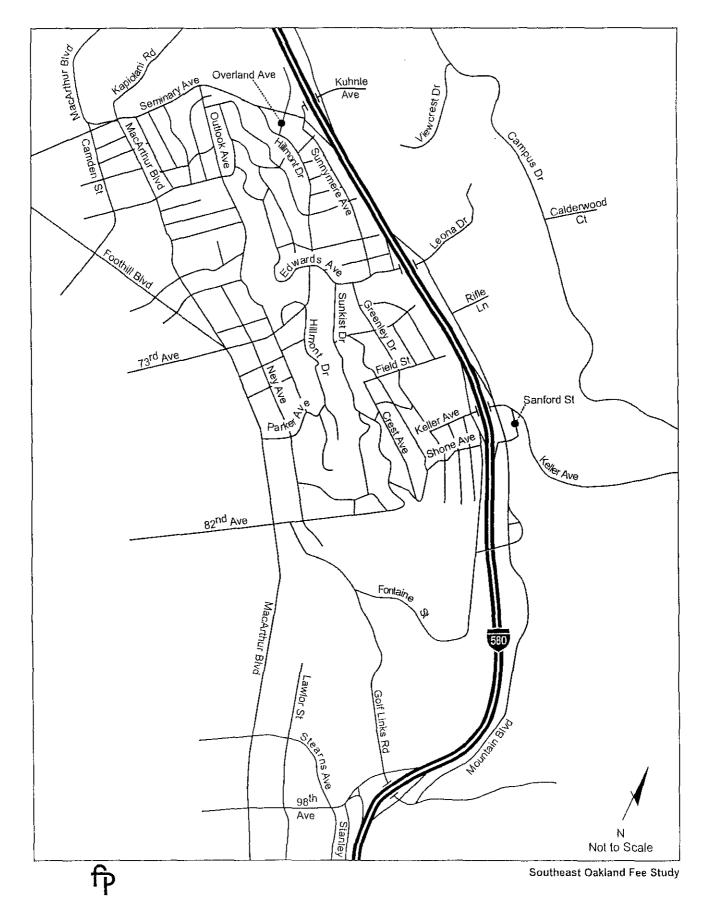
STUDY AREA

The study area is located in Southeast Oakland and is shown on Figure 1. The area generally extends along both sides of the I-580 freeway corridor between the Seminary Avenue and the 98th Avenue interchanges. A more detailed map of the geographic area included in the Southeast Oakland TIF and TIP is provided in Appendix B. The goal of the study is to calculate a fee that would be collected on new development in the Southeast Oakland TIF and TIP area.

STUDY PROCESS

This study was developed under the direction of City of Oakland staff. After review and public hearing. the City Council will consider approval of the study and adoption of an ordinance specifying a fee schedule.

ORGANIZATION OF THE REPORT


This report contains a total of four chapters including this introductory chapter.

Chapter 2 - Fee Program Background provides an overview of fee programs and the factors considered in this analysis. A description of the projects proposed to be included in this TIF program is also included.

Chapter 3 - Analysis Methods and Results describes the technical analysis conducted to establish the nexus between local development and the costs of improvements, and presents the results of the fee calculations.

Chapter 4 – Findings reviews the study procedures and results in the context of the requirements of AB 1600.

FEHR & PEERS

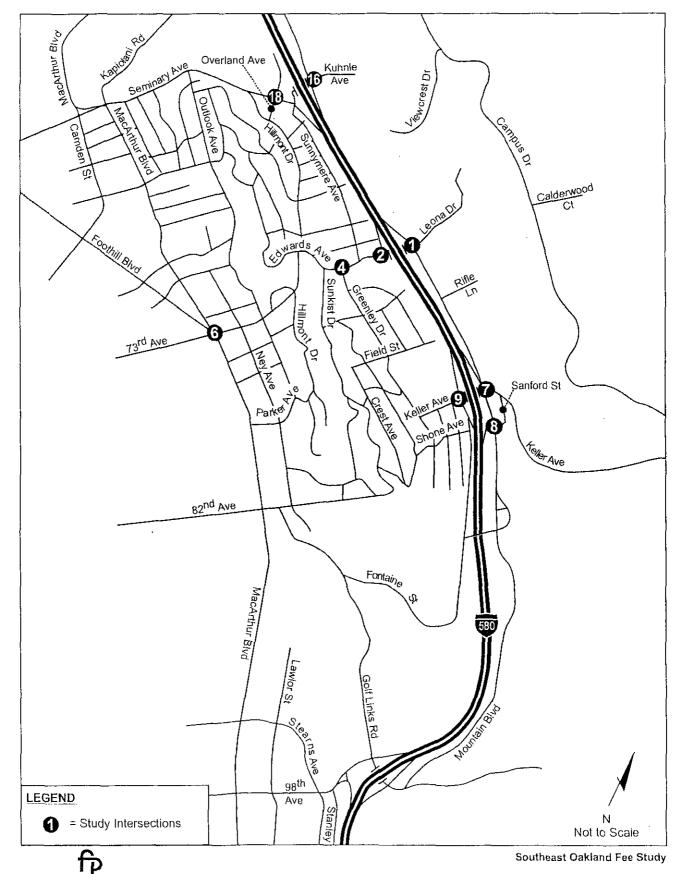
STUDY AREA

2. THE PROPOSED FEE PROGRAM

This chapter describes the impetus behind this proposed fee program and identifies the project locations covered by the Southeast Oakland TIF and TIP.

The Southeast Oakland TIF and TIP developed here is intended to assess the cost-sharing responsibilities for capital roadway improvements identified in the Leona Quarry EIR and in the Conditions of Approval for the Leona Quarry project. As specified in these documents and in the Leona Quarry Settlement Agreement, the following improvements will be included in the Southeast Oakland TIF and TIP¹:

- 1. I-580 Westbound On-Ramp/Edwards Avenue/Mountain Boulevard: Install traffic signal and associated geometric changes.
- 2. I-580 Eastbound Off-Ramp/Edwards Avenue: Install traffic signal and associated geometric changes (including improvements to the Burckhalter Park driveway).
- 4. Greenly Drive/Edwards Avenue: Restripe Edwards Avenue to provide a separate westbound left-turn lane.
- MacArthur Boulevard/Foothill Boulevard/73rd Avenue: Modify west leg to add a second eastbound left-turn lane.
- 7. Mountain Boulevard/Keller Avenue: Install traffic signal.
- 8. I-580 Westbound Off-Ramp/Mountain Boulevard/Shone Avenue: Install traffic signal,
- I-580 Eastbound Off-Ramp/Keller Avenue: Install traffic signal.
- 16. I-580 Westbound Off-Ramp/Seminary Avenue/Kuhnle Avenue: Install traffic signal and add second eastbound left-turn lane.
- 18. I-580 Eastbound Off-ramp/Seminary Avenue/Overdale Avenue: Install traffic signal,


In addition, Conditions of Approval #26g and #26h call for the TIF and TIP to include a study of other potential long-term operational improvements along the Edwards Avenue, 82nd Avenue, and Seminary Avenue routes, including any further intersection improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR. A more detailed description of this study is included in Appendix C.

The locations of these TIF and TIP projects are shown on Figure 2. The nexus analysis presented in the subsequent chapters calculates fees that can be collected to support improvements at these locations.

¹ Intersection numbering is consistent with that used in the Leona Quarry EIR.

7

FEHR & PEERS TRANSPORTATION CONSULTANTS

SOUTHEAST OAKLAND TRAFFIC IMPROVEMENT FEE PROJECTS

3. ANALYSIS METHODS AND RESULTS

The analysis methods used to determine the nexus between traffic impacts from new developments and the associated improvement measures are outlined in this chapter, along with the results of the fee calculations.

Step 1 - Review and Update Prior Traffic Analysis

The capital improvements to be included in this fee study were initially identified as mitigation measures in the Leona Quarry EIR. The analysis presented in the EIR was based on traffic forecasts derived from 2020 land use projections used in the Alameda County Congestion Management Agency (ACCMA) model. More recently, year 2025 ACCMA model land use projections have become available. For this study, an updated analysis using the most recent land use projections currently available was conducted to verify the applicability of the mitigation measures. The process of reviewing and updating the traffic analysis is described below. Appendix B provides further detail about the land use projections.

Existing Traffic Conditions

Existing peak hour operating conditions at the relevant study intersections from the Leona Quarry EIR are presented in Table 1. As shown in Table 1, the EIR analysis found that all intersections currently operate acceptably at LOS D or better during the morning and evening peak hours.

Future Traffic Conditions

As described above and in Appendix B, an updated future conditions analysis was conducted to ensure that the improvements called for in the Leona Quarry EIR would remain adequate to address future traffic demands. In this analysis, peak hour trips from new development in the study area were generated using rates from the Institute of Transportation Engineers (ITE) *Trip Generation*, 7th Edition and were added to the existing traffic volumes (a figure showing the resulting traffic volumes is included in Appendix D). The purpose of this analysis was to confirm that traffic from the new developments in the local study area would cause the need for improvements at the study intersections; to achieve this, no growth in traffic from outside the study area was assumed. In addition, we wanted to confirm that the mitigation measures proposed in the Leona Quarry EIR would be adequate to mitigate the projected deficiencies. A summary of these mitigation measures, which are the improvements included in this TIF and TIP, is provided in Table 2.

The resulting future peak hour traffic volumes were analyzed at each of the study locations, both with and without the specified mitigation measures, and the results are shown in Table 3. The results indicate that, with the addition of traffic from the new local developments ("Future Conditions"), all of the intersections would operate poorly, with levels of service at LOS E or F or with excessive queuing that would obstruct traffic flow. When the mitigation measures were applied ("Future With Mitigation"), all intersections would operate at LOS D or better, which is consistent with the City's standards. Thus, the capital improvements

identified for inclusion in the Southeast Oakland TIP/TIF will mitigate the traffic effects of new development in the area. Appendix D contains the detailed LOS analysis worksheets.

TABLE 1 EXISTING CONDITIONS PEAK HOUR INTERSECTION LEVELS OF SERVICE

	AM Pea	ak Hour	PM Peak Hour		
Intersection	Delay LOS ¹		Delay	LOS ¹	
Side-Street Stop-Controlled					
1. I-580 WB On-Ramp/Mountain Boulevard/Edwards Avenue	9.1 A		5.7	В	
2. I-580 EB Off-Ramp/Edwards Avenue	3.9	Α	3.6	A	
8. Mountain Boulevard/l-580 WB Off-Ramp/Shone Avenue	4.4	Α	6.3	В	
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	8.6	В	8.2	В	
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	4.2	Α	9.1	В	
All-Way Stop-Controlled					
7. Mountain Boulevard/Keller Avenue	13.6	С	12.8	С	
9. I-580 EB Off-Ramp/Keller Avenue	7.9	В	14.7	С	
Signalized					
4. Greenly Drive/Edwards Avenue	9.1	В	13.5	В	
6. MacArthur Boulevard/73 rd Avenue	28.6	D	27.2	D	

Notes: LOS = Level of Service; WB = westbound; EB = eastbound

Source: Revised Draft Traffic Study for the Proposed Residential Development at Leona Quarry Site in the City of Oakland, TJKM Transportation Consultants, June 7, 2002.

^{1.} Based on Highway Capacity Manual (HCM) 1994 method for unsignalized and signalized intersection service levels.

SOUTHEAST OAKLAND TIF AND TIP PROJECT LIST						
סו	Project	Description				
1 (MM K.2a)	J-580 WB On-Ramp/ Mountain Boulevard/ Edwards Avenue	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Edwards Avenue 				
2 (MM K.2b)	I-580 EB Off-Ramp/ Edwards Avenue	 Signalize intersection and coordinate with I-580 WB Off- Ramp/Edwards Avenue 				
4 (MM K.2c)	Greenly Drive/ Edwards Avenue	Add westbound left-turn lane				
6 (MM K.2d)	MacArthur Boulevard/ 73 rd Avenue	Add second eastbound left-turn lane				
		 Signalize intersection and coordinate with I-580 EB Off- Ramp/Keiler Avenue 				
7 (MM K.2e)	Mountain Boulevard/ Keller Avenue	 Re-stripe eastbound approach from one shared left/through/right lane to one shared left-turn/through lane and one shared through/right-turn lane 				
		Re-stripe west leg of Keller Avenue from two lanes to one lane				
8	Mountain Boulevard/	Signalize intersection				
(MM K.2f)	I-580 WB Off-Ramp/ Shone Avenue	 Re-stripe existing right-turn only lane on I-580 WB off-ramp to shared left-turn/right-turn lane 				
9 (MM K.2g)	I-580 EB Off-Ramp/ Keller Avenue	Signalize intersection and coordinate with Mountain Boulevard/Keller Avenue				
46	I-580 WB Off-Ramp/	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Overdale Avenue/Seminary Avenue and I-580 EB On- Ramp/Seminary Avenue/Kuhnle Avenue 				
16 (MM K.2h)	Seminary Avenue/ Kuhnle Avenue	 Re-stripe eastbound Kuhnle Avenue to include two exclusive left-turn lanes and one through lane 				
		Widen the north leg of Mountain Boulevard to one southbound lane and two northbound lanes				
18 (MM K.2i)	I-580 EB Off-Ramp/ Overdale Avenue/ Seminary Avenue	 Signalize intersection and coordinate with I-580 WB Off- Ramp/Seminary Avenue/Kuhnle Avenue and I-580 EB On- Ramp/Seminary Avenue/Kuhnle Avenue 				
A (COA 26g/h)	Study of Edwards Avenue and Seminary Avenue operational improvements	A study of other long-term operational traffic improvements along the Edwards Avenue, 82 nd Avenue segment and Seminary Avenue routes, particularly the Foothill-82 nd Avenue segment and the MacArthur-Seminary segment, including ar further intersection improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry El				

TABLE 3 FUTURE PEAK HOUR INTERSECTION LEVELS OF SERVICE WITHOUT AND WITH MITIGATION

			AM Pea	ak Hour		PM Pea		ak Hour	
	1	Future		Future With Mitigation		Future		Future With Mitigation	
Intersection	Traffic Control ¹	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. I-580 WB On-Ramp/ Mountain Boulevard/ Edwards Avenue	Side Street Stop ² (Signal ³)	>50 (NB)	F	15	В	>50 (NB)	F	11	В
2. I-580 EB Off-Ramp/ Edwards Avenue	Side Street Stop ² (Signal ³)	41 (SB)	E	20	В	47 (SB)	E	19	В
Greenly Drive/ Edwards Avenue	Signal ³	10	В	11	В	9	A ⁵	13	В
6. MacArthur Boulevard/ 73 rd Avenue	Signal ³	>80	F	49	D	>80	F	55	D
7. Mountain Boulevard/ Keller Avenue	All-Way Stop ⁴ (Signal ³)	>50	F	12	В	>50	F	9	А
8. Mountain Boulevard/ I-580 WB Off-Ramp/ Shone Avenue	Side Street Stop ² (Signal ³)	33 (EB)	D	8	А	>50 (EB)	F	9	Α
9. I-580 EB Off-Ramp/ Keller Avenue	All-Way Stop ⁴ (Signal ³)	20	С	18	В	>50	F	20	В
16. l-580 WB Off-Ramp/ Seminary Avenue/ Kuhnle Avenue	Side Street Stop ² (Signal ³))	>50 (NB)	F	20	С	>50 (NB)	F	19	В
18. I-580 EB Off-Ramp/ Overdale Avenue/ Seminary Avenue	Side Street Stop ² (Signal ³)	27 (NB)	С	7	А	>50 (NB)	F	11	В

Notes: LOS = Level of Service; NB = northbound; SB = southbound; WB = westbound; EB = eastbound.

- 1. Traffic control with mitigation shown in parenthesis.
- Side-street stop-controlled intersection level of service based on worst approach delay per vehicle (in seconds), according to the Highway Capacity Manual (HCM) - Special Report 209 (Transportation Research Board, 2000). The worst approach is indicated in parenthesis.
- 3. Signalized intersection level of service is based on average control delay per vehicle (in seconds), according to HCM 2000.
- All-way stop-controlled intersection level of service is based on average delay per vehicle (in seconds), according to HCM 2000.
- Westbound 95th percentile queue greater than 1,000 feet without mitigation.

Source: Fehr & Peers, 2006.

Step 2 - Summarize Capital Improvements and Estimate Costs

During preparation of the EIR and the Conditions of Approval, cost estimates were developed for the improvements identified in Chapter 2. The cost estimates have been reviewed and updated for the purposes of this TIF and TIP study, and are based on actual construction and design engineering costs (where available), current City fees, and local construction cost trends. Table 4 lists the proposed TIF/TIP improvements and their associated costs. The detailed cost estimate worksheets for each project are included in Appendix E.

TABLE 4 COST ESTIMATES FOR SOUTHEAST OAKLAND TIF/TIP IMPROVEMENTS					
Location Cost Estimate					
1 and 2. I-580 WB On-Ramp/Edwards Avenue and	\$961,300				
I-580 EB Off-Ramp/Edwards Avenue					
Greenly Drive/Edwards Avenue	\$107,800				
6. MacArthur Boulevard/73 rd Avenue	\$622,300				
7. Mountain Boulevard/Keller Avenue	\$823,200				
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	\$409,100				
9. I-580 EB Off-Ramp/Keller Avenue	\$411,400				
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	\$757,000				
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	\$417,600				
A. Study of Edwards Avenue and Seminary Avenue operational improvements	\$350,000				
Total Cost of Improvements	\$4,859,700				
Source: HQE, Incorporated, 2006; City of Oakland, 2006.					

Step 3 - Summarize the Amount of New Development

For purposes of a fee calculation, it is important to identify the amount of future growth expected in the fee program area, in order to produce a reasonably accurate estimate of the new development that will be subject to the fee. Existing and future land use projections from the ACCMA model were used to determine the amount of new development expected in the TIF and TIP area.

The most recent available set of Oakland land use data from the Alameda County CMA model was used to estimate the total amount of new development expected in the TIF and TIP area. The ACCMA model projections were provided in four basic land use categories: residential dwelling units, retail jobs, service jobs, and manufacturing jobs. Because there are different traffic-generating characteristics from different housing types, the City requested that the residential land use projections be broken down into two

categories: traditional single-family dwelling units and other residential types. Many of the residential development projects being proposed in this area of the City involve duet homes, townhomes, or other attached residential types that may have somewhat different traffic characteristics from traditional single-family development. For the Leona Quarry development, it is known that the project includes 404 townhomes and 19 single-family dwellings. For all other areas in the Southeast Oakland TIF/TIP area, it was assumed that the future residential development would be 40% single-family and 60% other types, which is generally consistent with the current development plans for the Oak Knoll site. The resulting development projections are shown in Table 5. The program area is expected to grow by approximately 1,400 residential units over the next 20 years; most of those new units are expected to be in the Leona Quarry and the Oak Knoll development areas. Employment is expected to grow by about 850 jobs, with most of the additional employment expected in the southernmost part of the TIF and TIP area, west of l-580 and south of 98th Avenue.

The concept of Dwelling Unit Equivalents (DUEs) is commonly used in fee studies to account for the fact that different development types generate traffic with different characteristics and with different levels of impact on the city's transportation system. DUE conversion factors typically account for differences in peak hour trip rates for each development type, as well as the effects of pass-by trips that are often associated with commercial uses. For example, retail uses tend to generate more trips per square foot than office uses, but those retail trips tend to be shorter in length because people often visit several retail establishments during the course of a single trip, or stop by a retail business on their way to their final destination. The DUE conversion process accounts for these differences in impact on the transportation system.

The DUE factors developed for the Southeast Oakland TIF/TIP are shown in Table 6, and reflect the PM peak hour trip rates published in the Institute of Transportation Engineer's (ITE's) *Trip Generation* Manual, 7th Edition and the percentage of new trips (i.e., excluding pass-by trips) published in the San Diego Association of Governments (SANDAG) *Brief Guide of Vehicular Traffic Generation Rates*, July 1998. The results were normalized to the single-family dwelling unit rate to produce a DUE per unit rate for each land use category.

The projected growth in each land use category shown in Table 5 was multiplied by the DUE conversion factors shown in Table 6, and the resulting total number of DUEs by category is shown in Table 7. Appendix B provides detailed land use and DUE results for each traffic analysis zone in the Southeast Oakland TIF/TIP area.

TABLE 5 SOUTHEAST OAKLAND TIF AND TIP AREA HOUSING AND EMPLOYMENT PROJECTIONS					
Land Use Category	Projected Growth				
Single-Family Residential Units	422				
Other Residential Units	1,008				
Retail Jobs	481				
Service Jobs	387				
Manufacturing Jobs	0				
rce: Hausrath Economics Group, 2005.					

TABLE 6 DUE CONVERSION FACTORS									
Land Use Category Unit PM Peak Hour Trip Rate New Trips DUE per Unit									
Single-Family Residences	Dwelling Unit	1.01	100%	1.00					
Other Residences	Dwelling Unit	0.78	100%	0.77					
Retail	Job	1.13	50%	0.56					
Service	Job	0.46	65%	0.30					
Manufacturing	Job	0.42	80%	0.33					

Notes:

PM peak hour trip rates from ITE Trip Generation, 7th Edition, using the following categories:

ITE #210: Single-Family Detached Housing used for Single-Family Residential category

ITE #231: Low-Rise Residential Condo/Townhouse used for Other Residential category ITE #820: Shopping Center used for Retail Jobs category ITE #710: General Office Building used for Service Jobs category

ITE #110: General Light Industrial used for Manufacturing Jobs category

SANDAG Brief Guide of Vehicular Traffic Generation Rates, July 1998.

Source: Fehr & Peers, 2006.

TABLE 7 GROWTH CONVERTED TO DUES								
Land Use Category	Total Growth	DUE Per Unit	Growth Converted to DUEs					
Single-Family Residential Units	422	1.00	422					
Other Residential Units	1,008	0.77	777					
Retail Jobs	481	0.56	270					
Service Jobs	387	0.30	115					
Manufacturing Jobs	0	0.33	0					
TOTAL DUEs			1,584					
Source: Fehr & Peers, 2006.								

Step 4 - Determine Fee Amounts

To determine the appropriate fee amounts assessed to individual developments, the total cost of the capital improvements (Step 2) was divided by the total number of new DUEs (Step 3). Table 8 displays the calculated impact fees by land use category. The total cost of the TIF and TIP improvement projects as shown in Table 4 (\$4,859,700) was divided by the total number of DUEs expected in the program area as shown in Table 7 (1,584) to calculate the resulting fee per DUE (\$3,068). An administration fee of 3% was added, to bring the final total fee to \$3,160 per DUE. These figures do not reflect any reductions or subsidies that the City may choose to implement.

TABLE 8 PRELIMINARY SOUTHEAST OAKLAND TIF AND TIP FEE CALCULATIONS							
Land Use Category	Fee/Unit						
Single-Family Residential	\$3,160/Unit						
Other Residential	\$2,440/Unit						
. Retail	\$5.89/Square Foot						
Service	\$3.12/Square Foot						
Manufacturing	\$1.44/Square Foot						
Source: Fehr & Peers, 2006.							

4. FINDINGS

This report provides a detailed discussion of the elements of the proposed Southeast Oakland TIF and TIP and explains the analytical techniques used to develop this nexus study. The report addresses all the fee program elements required by AB 1600, as described below:

Identifying the purpose of the fee

The purpose of the Southeast Oakland TIF and TIP is to mitigate the traffic impacts of new development within the study area, by developing an overall transportation system that will accommodate the expected future traffic demand. Specifically, there are a number of intersections where traffic operations are expected to deteriorate with the addition of traffic from new development in the study area. Table 3 provides the traffic operations analysis results for these intersections and identifies the operations problems that are expected to occur if mitigation measures are not implemented. This TIF program is designed to fund the necessary mitigation measures and ensure that the traffic operations at the affected intersections remain within the City's standards.

Identifying how the fee will be used and the facilities to be funded through the fee

Revenues from the Southeast Oakland TIF and TIP will be used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. These projects include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area. Table 2 describes all of the capital improvement projects to be funded through the fee program, and Table 4 summarizes the costs of those improvements. The TIF and TIP will be administered by the City of Oakland Public Works Agency.

Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed

Different types of development generate traffic with different characteristics and the nexus analysis presented in this report accounts for the differential impact on the local street system caused by different development types. Tables 5, 6 and 7 and the accompanying text describe the amount of new development of different types expected in the Southeast Oakland area over the next 20 years, including residential, retail, and professional/service types of uses. The traffic generated by these new uses will have effects on the nine intersections described above; the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

<u>Determining a reasonable relationship between the need for the public facility and the type of development on which the fee is imposed</u>

The need for the capital improvements listed in Table 2 was established in the Leona Quarry EIR. This report confirms that the mitigation measures identified in that EIR would adequately address the expected traffic operations issues (through the analysis described in Chapter 3, Step 1) by determining that implementation of the improvements would return the traffic operations at the nine affected intersections to within the City's standards. Table 1 shows there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for

improvements at these locations is attributable to traffic generated by new development. As described above, the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

<u>Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development</u>

The nine intersections included in this study currently operate within the City's standards, indicating that there are no existing deficiencies at the improvement locations included in the TIF program. Further, the analysis presented in Table 3 shows that traffic generated by the new development expected in the Southeast Oakland TIF program area will cause operational deficiencies at the study locations; those deficiencies are mitigated by the identified capital improvement projects. Thus, the TIF program is targeted toward the public improvements necessary to accommodate the traffic generated by new development within the program area.

The cost estimates for the capital improvement projects have been carefully developed and reviewed to ensure that all reasonably anticipated cost elements have been accounted for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs are then distributed among the different development types in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category.

APPENDIX A: SUMMARY OF FEE PROGRAMS IN OTHER JURISDICTIONS

Currently, the City of Oakland does not collect transportation related impact fees for new development, although the city does charge fees for other purposes, such as affordable housing. For purposes of information and comparison, Tables A-1 and A-2 summarize citywide development fees and transportation related development fees in other Northern California jurisdictions.

TABLE A-1									
TOTAL IMPACT FEES	1								

City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ² (per ksf)	Restaurant ² (per ksf)	Retail ² (per ksf)
Alameda	\$3,229	\$2,644	\$3,378	\$3,485	\$3,485
Berkeley	\$4,695	\$1,947	\$12,253	\$48,910	\$63,541
Concord	\$27,323	\$26,823	\$6,754	\$8,234	\$8,234
Emeryville	\$7,239	\$2,643	\$5,370	\$8,624	\$6,923
Fremont	\$25,049	\$16,938	\$5,975	\$7,732	\$5,903
Sacramento	\$6,505	\$4,934	\$3,148	\$1,033	\$1,033
San Francisco	\$23,270	\$23,270	\$22,000	\$10,000	\$12,000
San Jose	\$26,716	\$24,090	\$14,246	\$3,806	\$3,806
Average	\$15,503	\$12,911	\$9,140	\$11,478	\$13,116
Minimum	\$3,229	\$1,947	\$3,148	\$1,033	\$1,033
Maximum	\$27,323	\$26,823	\$22,000	\$48,910	\$63,541

Notes:

Source: Fehr & Peers and HQE, Inc, March 2006.

Total impact fee includes transportation impact fee and other development fees for parks, affordable housing, child care, sewer, drainage, fire, public facilities, etc. (building permit and plan check fees are excluded, as are fees collected by school districts or other outside agencies).

^{2.} Calculation based on gross floor area.

TABLE A-2
TRANSPORTATION IMPACT FEES

City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ¹ (per ksf)	Restaurant ¹ (per ksf)	Retail ¹ (per ksf)
Alameda ²	\$1,128	\$866	\$3,040	\$3,140	\$3,140
Berkeley	\$4,695	\$1,947	\$7,253	\$43,910	\$58,541
Concord	\$2,588	\$2,088	\$5,920	\$7,400	\$7,400
Emeryville	\$1,976	\$1,384	\$1,970	\$5,224	\$3,523
Fremont	\$2,513	\$1,949	\$5,000	\$6,360	\$5,000
Sacramento	\$380	\$316	\$318	\$600	\$600
San Francisco	-	-	\$10,000	\$10,000	\$10,000
San Jose	\$6,994	\$5,596	\$10,440	-	•
Average	\$2,534	\$1,768	\$5,493	\$9,579	\$11,026
Minimum	\$380	\$316	\$318	\$600	\$600
Maximum	\$6,994	\$5,596	\$10,440	\$43,910	\$58,541

Notes:

- 1. Calculation based on gross floor area.
- 2. City of Alameda Transportation Fee estimated based on discussion with city staff.

Source: Fehr & Peers and HQE, Inc, March 2006.

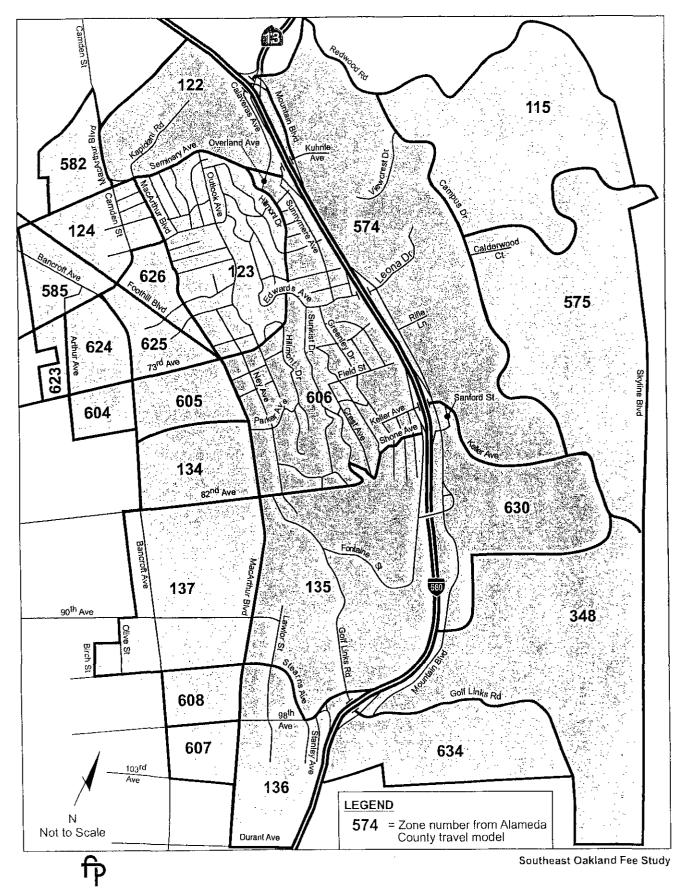
APPENDIX B: TIF AND TIP AREA AND LAND USE PROJECTIONS

TIF and TIP Area

Figure B-1 presents a detailed view of the TIF and TIP area, including the numbers of the TAZs from the Alameda County CMA model that are within the program area.

Review of Land Use Projections

We compared the land use forecasts used in the Leona Quarry EIR with the most recent set available from the City's economic consultant (referred to as the Kaiser EIR dataset). The Leona Quarry EIR dataset projected to the year 2020, while the Kaiser EIR projected to 2025. Comparisons of household and employment totals for the study area from each dataset's respective horizon year showed very small differences of about 1% for households and 1.4% for employment. A summary of these comparisons is provided in Table B-1.


In a zone-by-zone comparison, the larger differences between the two datasets occur primarily in zones 135 and 136, which are in the far southern part of the study area and are unlikely to have much impact on travel through the intersections included in this traffic impact fee. Zone 123, located just south of Seminary Avenue near the Seminary interchange, also shows some increase in households, but that appears to be simply a recalibration of existing conditions; no growth in households is projected between the base year and the horizon year in either of the two datasets.

Based on this review, it was reasonable to conclude that the most recent set of land use projections are not substantially different from the projections used in the Leona Quarry EIR and thus would not substantially change the traffic forecasts in the study area.

Estimate of New Development in TIF Program Area

Existing and future land use projections from the CMA model were used to determine the amount of new development expected in the TIF program area. For each of the traffic analysis zones (TAZs) in the study area, the change in land use from the 2005 to the 2025 CMA model represents the expected amount of new development. Non-residential conversions were made in accordance with the Memorandum on *Revisions to Estuary Plan for Traffic Modeling* from Barry Miller, March 15, 1999 which consolidated non-residential land use projections into the following categories: manufacturing jobs, retail jobs and service jobs. Table B-2 presents the change in land use projected for each TAZ in the TIF program area.

Table B-3 presents more specific land use category conversion factors based on the Barry Miller memorandum that may prove useful in applying the fee to specific development applications.

FEHR & PEERS TRANSPORTATION CONSULTANTS

SOUTHEAST OAKLAND TIF PROGRAM AREA

TABLE B-1

COMPARISON OF LEONA QUARRY EIR AND KAISER EIR LAND USE PROJECTIONS

		Leona Q	uarry EIR			Kais	er EIR		Difference (Kaiser - Leona)			
TAZ	Total Ho	useholds	Total Em	Total Employment		useholds	Total Em	ployment	Total Households		Total Employment	
	2005	2020	2005	2020	2005	2025	2005	2025	2005	2020 or 2025	2005	2020 o 2025
115	485	485	647	677	481	502	647	677	-4	17	0	0
122	47	47	878	958	43	43	878	958	-4	-4	0	0
123	871	871	648	696	976	976	548	596	105	105	-100	-100
124	546	546	254	254	514	514	294	294	-32	-32	40	40
134	626	626	63	73	646	665	63	63	20	39	0	-10
135	779	865	296	170	606	606	96	86	-173	-259	-200	-84
136	255	255	540	765	196	364	561	1,058	-59	109	21	293
137	253	253	4	4	319	319	4	4	66	66	0	0
348	1,257	1,257	211	214	1,168	1,168	211	214	-89	-89	0	0
574	1,357	1,754	67	96	1,178	1,667	67	72	-179	-87	0	-24
575	631	631	0	0	707	707	0	0	76	76	. 0	0
582	494	494	42	42	496	496	42	42	2	2	0	0
585	655	655	37	43	746	777	37	43	91	122	0	0
604	212	212	0	0	222	222	0	0	10	10	0	0
605	563	563	56	76	545	545	56	76	-18	-18	0	0
606	1,134	1,134	30	41	1,090	1,090	30	37	-44	-44	0	-4
607	301	339	51	42	343	350	51	42	42	11	0	0
608	312	312	4	14	352	386	4	7	40	74	0	-7
623	354	354	13	13	317	317	14	14	-37	-37	1	1
624	434	434	99	99	436	436	99	99	2	2	0	0
625	105	162	1,395	1,471	70	128	1,395	1,471	-35	-34	0	0
626	170	170	109	115	182	231	100	100	12	61	-9	-15
630	170	718	188	253	212	766	188	253	42	48	0	0
634	0	0	319	347	1	1	319	347	1	1	0	0
Total	12,011	13,137	5,951	6,463	11,846	13,276	5,704	6,553	-165	139	-247	90

TABLE B-2
FORECASTED GROWTH IN STUDY AREA

		Estimated Growt	th (2005-2025)	1	Estimated Growth in DUEs (2005-2025) 4							
TAZ	Total		Employment ³		Single-Family	Other	Employment					
	Residential Units ²	Manufacturing	Retail	Service	Residential	Residential	Retail	Service	Total			
115	21	0	0	30	8	10	0	9	27			
122	0	0	0	80	0	0	0	24	24			
123	0	0	5	43	0	0	3	13	16			
124	0	0	0	0	0	0	0	0	0			
134	19	0	0	0	8	8	0	0	16			
135	0	0	0	0	0	0	0	0	0			
136	168	0	376	121	67	78	210	36	391			
137	0	0	0	0	0	0	0	0	0			
348	0	0	0	3	0	0	0	1	1			
574	489	0	0	5	45	343	0	1	389			
575	0	0	0	0	0	0	0	0	0			
582	0	0	0	0	0	0	0	0	0			
585	31	0	0	.6	12	15	0	2	29			
604	0	0	0	0	. 0	0	0	0	0			
605	0	0	10	10	0	0	6	3	9			
606	0	0	0	7	0_	0	0	2	2			
607	7	0	0	0	3	3	0	0	6			
608	34	0	0	3	14	15	0	1	30			
623	0	0	0	0	0	0	0	0	0			
624	0	0	0	0 '	0	0	0	0	0			
625	58	0	48	28	23	27	27	8	85			
626	49	0	0	0	20	22	0	0	42			
630	554	0	30	35	222	256	17	10	505			
634	0	0	12	16	0	0	7	5	12			
Grand Total	1,430	0	481	387	422	777	270	115	1,584			

Notes:

- 1. Growth calculated as the difference between year 2005 and 2025 land use projections from the Kaiser EIR, as shown in Table B-1.
- Total Residential Units were divided into Single-Family and Other Residential as follows: For Leona Quarry development, assumed 19 single-family and 404 other. For all other development areas, assumed 40% single-family and 60% other.
- 3. The CMA model land use category "Other" was divided into the fee program Retail and Service land use categories (50% Retail and 50% Service).
- 4. Growth was converted to DUEs based on the factors provided in Table 6 of the report, then rounded to the nearest whole DUE.

Source: Fehr & Peers, 2006.

TABLE B-3 LAND USE CONVERSION FACTORS

Land Use	Unit	Size/Employee	DUE Category Employment /Employee ¹					
Category	Offic	O LEG LIND TO YOU	Manufacturing	Retail	Service			
Office sf		300	0.5	0.25	0.25			
Retail	sf	300	0	0.5	0.5			
Dining	sf	300	0	0.5	0.5			
Entertainment	sf	300	0	0.5	0.5			
Wholesale	sf	750	0	0.75	0.25			
Off-price Retail	sf	750	0	0.75	0.25			
Warehousing	sf	1500	0	0.5	0.5			
Light Industry	sf	750	1	0	0			
Heavy Industry	sf	1000	1	0	0			
Public Use	sf	1000	0 0.5		0.5			

Notes:

Source: Barry Miller, Revisions to Estuary Plan for Traffic Modeling Memorandum, March 15, 1999.

The consolidated CMA model land use category "Other" was divided into the fee program Retail and Service land use categories (50% Retail and 50% Service).

APPENDIX C: DESCRIPTION OF EDWARDS/SEMINARY CORRIDOR STUDY

DESCRIPTION OF EDWARDS/SEMINARY CORRIDOR STUDY

Leona Quarry COA & MMRP 26g and 26h - Preliminary Study Scope

The Leona Quarry COA & MMRP 26g and 26h call for a study of other long-term operational improvements along the Edwards Avenue, 82nd Avenue segment and Seminary Avenue routes, particularly the Foothill Boulevard-82nd Avenue segment and the MacArthur Boulevard-Seminary Avenue segment and including any further intersections improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR. The preliminary scope is listed below. Note that a more detailed study scope will need to be developed in the future.

Study Purpose

The purpose of the study is to identify, package and prioritize traffic capacity, safety and calming improvements for the above-referenced roadways and potential cross-connectors under existing and 2025 conditions. The study is needed because several intersections and roadways, including arterial, collector and local streets, are projected to operate at unacceptable levels of service under 2025 conditions. The study must answer the concerns of the community regarding congestion and safety on the area roadways due to through traffic and traffic diversion onto local residential streets between I-580 and the Airport/Coliseum area as well as growth from nearby cumulative development. The recommended improvements will be presented to the City Council to request authorization to incorporate them into a previously approved Traffic Improvement Fee/Traffic Improvement Program, if any.

Study Breadth/Influence Area

The study area includes a local roadway network bounded by I-580 to the north, Foothill Boulevard and MacArthur Boulevard to the south, Seminary Avenue to the west and Golf Links Road/82nd Avenue to the east, and includes potential cross-connectors, such as Sunnymere Avenue, because these are routes that provide access between I-580 and the Coliseum/Airport Area, similar to Edwards Avenue. Study intersections and roadway segments include both signalized and unsignalized intersections as well as local, collector, and arterial roadways as follows:

Edwards Avenue at and between Sunnymere Avenue Greenly Drive Sunkist Drive Hillmont Drive Outlook Avenue Lacey/Ney Avenue

Seminary Avenue at and between
Outlook Avenue
MacArthur Boulevard
Camden Street
Foothill Boulevard

Golf Links Road/82nd Ave at and between Fontaine Street 82nd Avenue MacArthur Boulevard

Sunnymere Avenue at and between
Seminary Avenue and Edwards Avenue

Hillmont Drive at and between Seminary Avenue and 75th Avenue

Outlook Avenue at and between Seminary Avenue and Parker Avenue

Greenly Drive at and between
Edwards Avenue and Keller Avenue

Sunkist Drive at and between Edwards Avenue and 82nd Avenue

Ney Avenue at and between
Edwards Avenue and 82nd Avenue

Keller Avenue at and between Fontaine Street and Greenly Drive

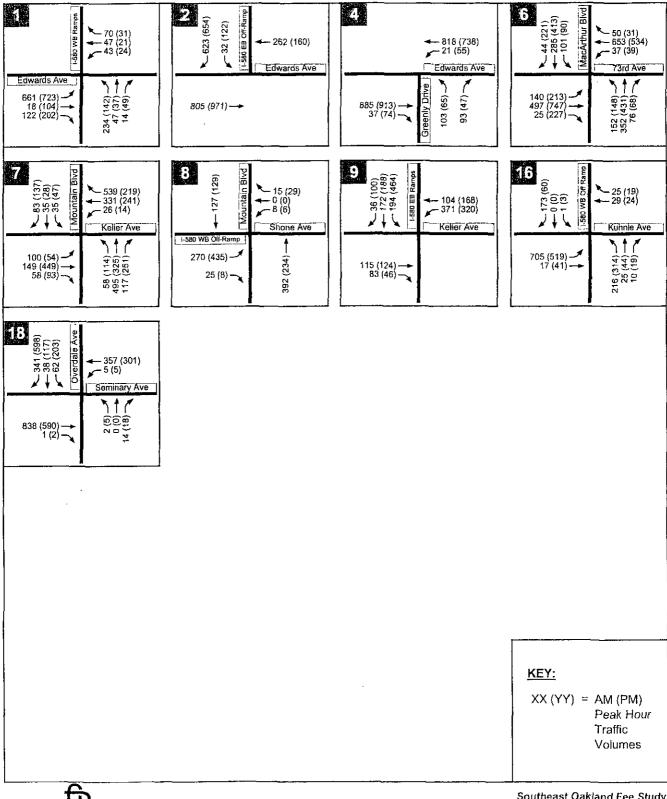
Fontaine Street at and between Keller Avenue Crest Avenue Golf Links Road

MacArthur Boulevard at and between
Seminary Avenue
64th Avenue
68th Avenue
73rd Avenue
75th Avenue
Parker Avenue
Ritchie Street
82nd Avenue

Foothill Boulevard at and between Seminary Avenue Camden Street 68th Avenue

Camden St at and between Seminary Avenue 64th Avenue Foothill Boulevard

68th Avenue at and between Outlook Avenue MacArthur Boulevard Foothill Boulevard


64th Avenue at and between
Outlook Avenue
MacArthur Boulevard
Camden Boulevard
Foothill Boulevard

The alternatives to be analyzed include existing and 2025 conditions with and without improvements, including two alternative improvement scenarios, during the a.m. and p.m. peak periods. The measures of effectiveness include level of service, speed, travel time, travel distance, traffic volumes, volume-to-capacity ratio, delay, queue lengths, number of stops, collisions, and benefit/cost ratio.

Study Approach/Model

The community is concerned about through traffic and traffic diversion to local residential streets between I-580 and the Airport/Coliseum area as well as growth from nearby cumulative development. A regional travel demand model would probably not be adequate to estimate traffic diversion on potential cut-through routes on a series of local residential streets because it would not be able to model the various types of traffic control and calming devices along these streets. Analytical Highway Capacity Manual (HCM) methods could estimate the capacity measures of effectiveness; however, they cannot estimate the effect queuing and traffic diversion. A study that uses both HCM analytical techniques and microsimulation techniques would probably best suit the needs of this study. The recommended software that incorporates both techniques is Snychro/SimTraffic.

APPENDIX D: DETAILED TRAFFIC LEVEL OF SERVICE ANALYSIS WORKSHEETS

Southeast Oakland Fee Study

FUTURE PEAK HOUR TRAFFIC VOLUMES AT STUDY INTERSECTIONS

·	<i>•</i>		*	€	-	4	1	†	<i>></i>	\	+	4
<u>Movajinani</u>		(eBi)	WEBR	AWBLA	W/BIM	WER.	MNBIN		PNBR	SBL	ASB/IIV	SBR
Lane Configurations	ኻ	4			_ 41	7	ሻ	4				
Sign Control		Free			Free 0%		•	Stop			Stop	
Grade Volume (veh/h)	661	0% 18	122	43	47	70	234	0% 47	14	0	0% 0	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	734	20	136	48	52	78	260	52	16	0.00	0.00	0.00
Pedestrians								•				
Lane Width (ft)			•								5	
Walking Speed (ft/s)												
Percent Blockage								•				
Right turn flare (veh) Median type								None			None	
Median storage veh)					•			140116			140110	•
Upstream signal (ft)		1252			,				•			
pX, platoon unblocked	-								•			
vC, conflicting volume	130	1 7		156	;		1704	1782	88	1678	1772	52
vC1, stage 1 conf vol								ur.				
vC2, stage 2 conf vol vCu, unblocked vol	130	- 1		156			1704	1782	88	1678	1772	52
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)	•			. ,		** ,			e			
tF(s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	50			97		,	0	0	98	0	100	100
cM capacity (veh/h)	1455			1425	1.7		43	39	971	0	40	1015
Dineston, Lemes	4501	IEB 2	wei.	V/MEX/2	ANBY(I	411181/2					e de la companya de	
Volume Total	734	156	100	78	260	68						
Volume Left	734	0 136	48 0.1	0 78	260	0 16						
Volume Right cSH	0 1455	1700	1425	76 1700	0 43	50						
Volume to Capacity	0.50	0.09	0.03	0.05	6.12	1.35						
Queue Length 95th (ft)	74	0	3	0	Err	156			-			
Control Delay (s)	10.0	0.0	3.8	0.0	Err	377.8		•				
Lane LOS	Α		Α		F	F						
Approach Delay (s)	8.2		2.1	8	3009.5			•		-		
Approach LOS					F							
Interisection Strinmany.												
Average Delay	::::		886.7	10	5111 =	-laf∩⊹	- 46-		D	,		
Intersection Capacity Ut Analysis Period (min)	ilization	'	62.9% 15	10	ou Leve	el of Sei	rvice		В			-
Anaiysis r enou (min)			13									

	۶	→	←	4	4	4	
Movement			eweni.	WBR/	(SBL)	(SBR)	
Lane Configurations		_ ^	↑		_ 1	7	
Sign Control	•	Free	Free	-	Stop		
Grade	_	0%	0%	_	0%		
Volume (veh/h)	0	805	262	0	32	623	·
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	894	291	0	36	692	
Pedestrians	•						
Lane Width (ft)						•	
Walking Speed (ft/s)							
Percent Blockage		-					
Right turn flare (veh) Median type	-				None		
Median storage veh)		•		÷	None		
Upstream signal (ft)		936					
pX, platoon unblocked	1 4	000			0.75		
vC, conflicting volume	291		4. 1		1186	291	
vC1, stage 1 conf vol	- 70 · ;;	. '				,	
vC2, stage 2 conf vol		••					
vCu, unblocked vol	291	-		,	1247	291	
tC, single (s)	4.1		.k		6.4	6.2	
tC, 2 stage (s)							
tF(s)	2.2				3.5	3.3	
p0 queue free %	100				75	7	
cM capacity (veh/h)	1271				144	748	en de la companya de La companya de la co
Diegion/Lane#	4554	AWISI II	else.	SB 2	1.045.45.00	Vi) 18 L	
Volume Total	894	291	36	692	ALTERNATION AND LOSS		
Volume Left	0	0	36	0			
Volume Right	0.	Ō	0	692	٠.		
cSH	1700	1700	144	748	•		•
Volume to Capacity	0.53	0.17	0.25	0.93			
Queue Length 95th (ft)	0	0	23	325		•	
Control Delay (s)	0.0	. 0.0	38.1	40.8		-	
Lane LOS			E	E			
Approach Delay (s)	0.0	0.0	40.7				
Approach LOS			E				
Intersection Summary							
Average Delay	All the Andrews States Andrews States	- man roll with 3	15.5	is a second to the terms to	Action to the country of	and of Assessed Security and Security and	The state of the s
Intersection Capacity Ut	ilization		59.0%	[0	CU Leve	el of Se	rvice B
Analysis Period (min)			15				•

		*	*	4	4	1				
Movement	WEBT!	JEBRY	WBL	V.V./BTF	ENBL	NBR				
Lane Configurations	₩			ર્ન	***					
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		•		
Total Lost time (s)	4.0			4.0	4.0			•		
Lane Util. Factor	1.00	,		1.00	1.00					
Frt	0.99		•	1.00	0.94	•				
Flt Protected	1.00			1.00	0.97				•	
Satd. Flow (prot)	1850			1860	1699					
Fit Permitted	1.00			0.98	0.97					
Satd. Flow (perm)	1850			1818	1699					
Volume (vph)	685	37	21	818	103	93				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90				
Adj. Flow (vph)	761	41	23	909	114	103				
RTOR Reduction (vph)	2	0	0	0	49	0	•			
Lane Group Flow (vph)	800	0	0 .	932	168	0			•	
Turn Type			pm+pt							
Protected Phases	4		∵3	8	. 2			2		
Permitted Phases	•		8					•		·
Actuated Green, G (s)	45.1			45.1	. 11.0	3.1 ·			1	
Effective Green, g (s)	46.1			46.1	12.0				•	
Actuated g/C Ratio	0.70			0.70	0.18					
Clearance Time (s)	5.0			5.0	5.0					
Vehicle Extension (s)	3.0		<u>.</u>	3.0	3.0	<u>. ′</u>	4 (2)	<u> </u>		*
Lane Grp Cap (vph)	1290			1268	308					
v/s Ratio Prot	0.43	•			c0.10			-		•
v/s Ratio Perm		·		c0.51						
v/c Ratio	0.62			0.74	0.55			*		
Uniform Delay, d1	5.3			6.2	24.6				-	
Progression Factor	1.00	•		1.00	1.00					
Incremental Delay, d2	2.2			2.2	2.0					
Delay (s)	7.6			8.5	26.5	, ,				
Level of Service	Α			Α	С					
Approach Delay (s)	7.6	•		8.5	26.5		4			
Approach LOS	Α			Α	C					
Intersection Summary			ns II							
HCM Average Control D	elay		10.1	ŀ	HCM Le	vel of Se	ervice	В		
HCM Volume to Capaci			0.70				_			
Actuated Cycle Length (66.1			ost time	. ,	8.0		
Intersection Capacity Ut	ilizatior	า	78.0%	ŀ	CU Lev	el of Ser	vice	D		
Analysis Period (min)			15							
c Critical Lane Group										

	٠	→	*	•	4	•	4	†	1	1	↓	1
Woweiment	(FEB)	VEBIN	SER.	W/BL/	W/BT/	WBR	MEL	NBIN	NBR	USBLA	SET	SBR
Lane Configurations	*5	↑	77	7	<u></u>			414			4₽	77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00		-	0.99			0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1843			3425			3494	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	1770	1863	1583	1770	1843			3425			3494	<u> 1583</u>
Volume (vph)	140	497	25	37	653	50	152	352	76	101	285	44
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	- 156	552	28	41	726	56	169	391	84	112	317	49
RTOR Reduction (vph)	0	0	18	0	2	0	0	9	0	0	0	0
Lane Group Flow (vph)	156	552	10	41	780	0	0	635	0	0	429	<u>49</u>
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	. 4		3	8	,	2	2	`-	6	6	
Permitted Phases			. 4									Free
Actuated Green, G (s)	5.0		45.5	32.5	73.0	× 1		18.0			15.0	131.0
Effective Green, g (s)	6.0	46.5	46.5	33.5	74.0			19.0			16.0	131.0
Actuated g/C Ratio	0.05	0.35	0.35	0.26	0.56			0.15			0.12	1.00
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0			5.0			5.0	
Vehicle Extension (s)		3.0	3.0	3.0	3.0	<u> </u>		3.0			3.0	
Lane Grp Cap (vph)	81	661	562	453	1041			497			427	1583
v/s Ratio Prot	c0.09	c0.30		0.02	c0.42		1.1	c0.19			c0.12	
v/s Ratio Perm			0.01									0.03
v/c Ratio	1.93	0.84	0.02	0.09	0.75			1.28			1.00	0.03
Uniform Delay, d1	62.5	38.7	27.4	37.1	21.5			56.0			57.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	458.7	9.0	0.0	0.1	4.9			139.5			44.7	0.0
Delay (s)	521.2	47.7	27.4	37.2	26.4			195.5			102.2	0.0
Level of Service	F	D	С	D	С			F			F	Α
Approach Delay (s)		147.3			27.0			195.5			91.7	
Approach LOS		F			С			F			F	
Intersection Summary		o du lé de		15/09/25/25			(1) (A) (A) (A)		6.800			
HCM Average Control D	2-7-7-1-6	A MARKET TO TWO CO.	112.0	<u> </u>	ICM Le	vel of So	ervice		F	2, 13 10 13 24 (4) 13 14 14	(Activity or senting a similar or senting or	THE PROPERTY OF THE PARTY OF TH
HCM Volume to Capaci			0.94						ŕ			
Actuated Cycle Length			131.0	5	Sum of l	ost time	(s)		12.0			
Intersection Capacity Ut		i	87.6%		CU Lev				· E			
Analysis Period (min)			15									
c Critical Lane Group												
,								,				

	≯	-	•	•	←	*	4	†	<i>></i>	-	↓	4
Mexement	EBU	EBIK	MEBR	AWELL	EWBT/	WBR	WNBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		_	स	7		413			4	7
Sign Control		Stop			Stop		•	Stop			Stop	
Volume (vph)	100	149	58	26	331	539	58	495	117	35	35	83
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	111	166	64	29	368	599	64	550	130	39	39	92
Direction (Lames:		WB/i	3VV/1572	ANEW!	NB/2	(SE) 1	882					
Volume Total (vph)	341	397	599	339	405	78	92					
Volume Left (vph)	111	29	. 0	64	0	39	0	• .	_			
Volume Right (vph)	64	0	599	0	130	0	92				•	
Hadj (s)	-0.01	0.07	-0.67	0.13	-0.19	0.28	-0.67				•	
Departure Headway (s)	8.2	8.2	7.5	8.3	8.0	9.7	8.7					
Degree Utilization, x	0.78		1.25	0.78	0.90	0.21	0.22					
Capacity (veh/h)	430	431	487	428	439	352	388					
Control Delay (s)	34.9	51.0	150.0	33.9	47.8	14.0	13.1					
Approach Delay (s)	34.9	110.6		41.5		13.5						
Approach LOS	\mathbf{D}_{i}	, F.		Ε.		В		Section 2				
Interfector Summerly	(28/21/15)	70	y in the		吸收效果							
Delay	; . ;		68.9	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 No. 1				•
HCM Level of Service		·	F									
Intersection Capacity Ut	ilizatior	ri i	79.4%	l l	CU Leve	el of Se	rvice		, D			
Analysis Period (min)			15									
			-					•				

	٠	→	*	•	←	*	4	†	1	\	↓	4
Movements Lane Configurations Sign Control	(EBILL)	EBT.		·WBL	WB∏ ♣ Stop	WER		NBT ↑ Free	<u> Ner</u>	(SEIL)	SET# ↑ Free	ESER
Grade Volume (veh/h) Peak Hour Factor	270 0.90 300	0% 0 0.90	25 0.90 28	8 0.90 9	0% 0 0.90 0	15 0.90 17	0 0.90 0	0% 392 0.90 436	0.90	0 0.90 0	0% 127 0.90	0 0.90 0
Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s)	300	. 0	20	9	U	17		430		. 0	141	U
Percent Blockage Right turn flare (veh) Median type		None			None		ζ'				• •	
Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume	593	577	141	604	577	436	141			436		
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol	593	577	141	604	577	436	141			436		
tC, single (s) tC, 2 stage (s) tF (s)	3.5	6.5 4.0	6.2 3.3	7.1	6.5 4.0	6.2 3.3	4.1 2.2			4.1 2.2		
p0 queue free % cM capacity (veh/h)	26 406	100 428	97 907	98 397	100 428	97 621	100 1442			100 1124		
Volume Total Volume Left Volume Right	300 300 0	28 0 28	26 9 17	436 0 0	141 0 0							· ·
cSH Volume to Capacity Queue Length 95th (ft)	406 0.74 147	907 0.03 2	519 0.05 4	1700 0.26 0	1700 0.08 0					-		
Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	35.1 E 32.9 D	9.1 A	12.3 B 12.3 B	0.0	0.0	-	e. 1.	-				
Intersection Summary Average Delay Intersection Capacity Uti Analysis Period (min)				, , , , , , , , , , , , , , , , , , ,	CU Leve	el of Ser	vice		A. A.	<u> </u>		

	*		*	•	←	•	4	†	1	-	\downarrow	4
Movement.		(JEB)	d BURK	:AWB Li	WBIT	WER	WNBL	MANBIFA	anieir@	(SBL)	S BT	SBR
Lane Configurations		4		*	_						414	
Sign Control		Stop		÷	Stop	_		Stop		•	Stop	÷
Volume (vph)	0	115	83	371	104	0	0	0	0	194	172	36
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	128	92	412	116	0	0	0	0	216	191	40
Differention, Letitor:	EBI	WB (W/NB)/2	(SE)	(SB/2)				i di di	SAMON TO	e di di	N. W. Car
Volume Total (vph)	220	412	116	311	136							
Volume Left (vph)	0	412	0	216	0							
Volume Right (vph)	92	Ō	0	Ó	40	•						
Hadj (s)	-0.22	0.53	0.03	0.38	-0,17							
Departure Headway (s)	6.6	6.9	6.4	7.1	6.5							
Degree Utilization, x	0.40	0.79	0.21	0.61	0.25							
Capacity (veh/h)	521	513	544	486	527				•			
Control Delay (s)	13.9	30.0	9.8	19.5	10.5							
Approach Delay (s)	13.9	25.6	*	16.7								-
Approach LOS	. В	D		C	<u> (</u>	1.		4,				
nterseojon Sunnany		A (14 % N)			12.11.2							
Delay			20.1	N 12 - 1	i vier							
HCM Level of Service		• • •	C			'			-	,	•	
Intersection Capacity Ut	ilization		53.2%	'- ' <u>(</u>	CU Leve	el of Ser	vice		• А			
Analysis Period (min)			15		•		-					
		1		1								

	*		*	•	←	•	*	†	/	/	↓	4
Movement	EBL		LEBR	W/BIL	WBTI:)WBR(NBL	MIBIE	NBR	#SBIL	(SBI)	- SBR
Lane Configurations Sign Control	۳	↑ Free			1 → Free		Ť	f ₃ Stop			♣ Stop	
Grade		0%			0%	-		. 00p	•		0%	•
Volume (veh/h)	705	17	0	0	29	25	216	25	- 10	1	0	173
	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	783	19	. 0	0	32	- 28	240	28	11	1	0	192
Pedestrians Lane Width (ft)												
Walking Speed (ft/s)	•	·•					÷		,			
Percent-Blockage											· ·	
Right turn flare (veh)								Mana			Nima	
Median type Median storage veh)		:		1.				None			None	
Upstream signal (ft)	٠.					,						
pX, platoon unblocked			·									
vC, conflicting volume	60	. :		19		- · · · · ·	1824	1646	19	1657	1632	46
vC1, stage 1 conf vol vC2, stage 2 conf vol			٠,					<i>2</i>				-
vCz, stage z com voi vCu, unblocked vol	60		. '	19	1 1 2		1824	1646	19	1657	1632	46
tC, single (s)	4.1			4.1			7.1	6.5		7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2 49			2.2 100		. 11.71	3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free % cM capacity (veh/h) 1	49 544	750		1598			0 29	43 49	99 1059	96 27	100 50	81 1023
En Castern V Canada		្រាស់			ะในเอะสา	্যক্তিয়ান হৈছিল				18 Ka C 2		1020
Dingahan Lane <i>d</i> Volume Total	783	19	60	240	39	193				al Su		
Volume Left	783	0	0	240	0	1			•			
Volume Right	0	0	28	. 0	11	192						
	544	1700	1700	29	67	844						
	0.51 75	0.01 0	0.04	8.28 Err	0.58 61	0.23 22		-			• .	
Queue Length 95th (ft) Control Delay (s)	9.7	0.0	0.0	Err	115.0	10.5						
Lane LOS	Α			F	F	В						
Approach Delay (s)	, ,			2000		10.5						
Approach LOS	9.5		0.0	8620.7								
			0.0	F		В						
hitelisection/Summetry												
intersection Summary Assa Average Delay Intersection Capacity Utiliz	9.5		0.0 1808.9 78.5%	F	CU Leve	В			D			

	≯		*	•	•	•	4	1	<i>></i>	-	ļ	4
Movement Lane Configurations Sign Control Grade	Mebie)	€67 €17 Free 0%	HEER.	WELK	WB∏ ∢1Դ Free 0%	Ware		NBIII ♣ Stop 0%	HNBRY		SBIN 4 Stop 0%	SBR 7
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph)	0.90 0.90	838 0.90 931	1 0.90 1	5 0.90 6	357 0.90 397	0 0.90 0	2. 0.90 2	0 0.90 0	14 0.90 16	62 0.90 69	38 0.90 42	341 0.90 379
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage			-									:
Right turn flare (veh) Median type Median storage veh)		. `			÷	-	. ,	None		٠.	None	
Upstream signal (ft) pX, platoon unblocked	207						4544	4220	400	000	4040	400
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	397			932	•		1541	1339	466	889	1340	198
vCu, unblocked vol tC, single (s)	397 4.1			932 4.1	· ·		1541 7.5	1339 6.5	466 6.9	889 7.5	1340 6.5	198 6.9
tC, 2 stage (s) tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1158			2.2 99 730			3.5 93 33	4.0 100 150	3.3 97 543	3.5 70 230	4.0 72 150	3.3 53 810
Direction Lanes:	466	EB/2 467	W/B/II 204	WB)2.	/NB//I 18		SB 2 379					
Volume Left Volume Right cSH	0 0 1158	0 1 1700	6 0 730	0 0 1700	2 16 183	69 0 191	0 379 810					
Volume to Capacity Queue Length 95th (ft) Control Delay (s)	0.00 0 0.0	0.27 0 0.0	0.01 1 0.4	0.12 0 0.0	0.10 8 26.7	0.58 79 47.1	0.47 63 13.3					
Lane LOS Approach Delay (s) Approach LOS	0.0		0.2		D 26.7 D	21.0 C	В					
Intersection/Summar/ Average Delay Intersection Capacity U Analysis Period (min)			5.9 44.5% 15	and leave the said and all and and all	CU Leve	el of Ser	vice		A			

· · · · · · · · · · · · · · · · · · ·	۶	-	*	•	+ —	4	4	<u>†</u>	<i>></i>	1	↓	4
Moxedent:		AEBIL:) BBR	AWBL:	WVB7	W/BR	NEL	NBT	NBR	(SBI)	SBT	98R
Lane Configurations	٦	∱ >			∔ Free	7	*	₽	-		Cton	
Sign Control Grade		Free 0%			0%	•	*	Stop 0%	-		Stop 0%	
Volume (veh/h)	723	104	202	24	21	. 31	142	37	49	0	0	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	803	116	224	27	23	34	158	41	54	. 0	0	. 0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												_
Percent Blockage					٠.		<i>:</i> `			. + 5		
Right turn flare (veh) Median type					1			None			None	
Median storage veh)					•	•		110110			110110	
Upstream signal (ft)		1252	• :							1 - 1 - 1 - 1 - 1		
pX, platoon unblocked	•		-	·		,						
vC, conflicting volume	58		-	340			1911	1946	228	1874	2023	23
vC1, stage 1 conf vol										,		
vC2, stage 2 conf vol vCu, unblocked vol	58		13.	340	•		1911	1946	228	1874	2023	23
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)			. 4 .2		J. 1		., ., .		0.2	• • • • •		
tF (s)	2.2	and the second		2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	48			98			0	0	93	0	100	100
cM capacity (veh/h)	1546			1219			30	30	812	`- 0 _,	27	1053
Dinexolitori denie	(EB)	(EjB) /2	WB 1	W/B/2	WB ii	1/18/2	44.2					
Volume Total	803	340	50	34	158	96						
Volume Left	803	0	27	0	158	0						
Volume Right	0	224	4040	34 1700	0	54 67	٠				, .	
cSH Volume to Capacity	1546 0.52	1700 0.20	1219 0.02	0.02	30 5.26	67 1.42						
Queue Length 95th (ft)	78	0.20	9.92	0.02	Err	200						
Control Delay (s)	9.8	0.0	4.4	0.0	Err	359.5						
Lane LOS	Α		Α	•	F	F		-				
Approach Delay (s)	6.9		2.6	6	5363.1							
Approach LOS					F							
Intersection/Sulminally	145						200					
Average Delay			1093.8				_					
Intersection Capacity Ut	ilizatior	1	61.3%](CU Leve	el of Se	rvice		В			
Analysis Period (min)			15									

	1		←	A.	\	4				-
Mowaniani	VEBU/	(4E)B/(K)	evyyjeti (s	WBR/	. SBL					
Lane Configurations		†	†		ጘ	7		- -		
Sign Control		Free	Free		Stop	-				
Grade		0%	0%		0%					
Volume (veh/h)	0	971	160	. 0	122	654	-			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90				
Hourly flow rate (vph)	0	1079	178	. 0	136	727				
Pedestrians										
Lane Width (ft)		5								
Walking Speed (ft/s)										
Percent Blockage			-					-		
Right turn flare (veh)										
Median type					None					
Median storage veh)										
Upstream signal (ft)		936		•						
pX, platoon unblocked					0.77					
vC, conflicting volume	178			eta de la	1257	178	N			
vC1, stage 1 conf vol										
vC2, stage 2 conf vol		1								
vCu, unblocked vol	178				1335	178				
tC, single (s)	4.1			er er inge	6.4	6.2				
tC, 2 stage (s)			-				,			
tF (s)	2.2				3.5	3.3			1. 1	
p0 queue free %	100				0	16		-		
cM capacity (veh/h)	1398				130	865	·		·	
Direction/ beiner:	(EBM)	WMBY (I	SE I	8 8 2						
Volume Total	1079	178	136	727						
Volume Left	ď	O	136	0	,					
Volume Right	. 0 .	0	. 0	727	-	-				
cSH	1700	1700	130	865						
Volume to Capacity	0.63	0.10	1.05	0.84						
Queue Length 95th (ft)	0	0	188	250		•				
Control Delay (s)	0.0	0.0	157.8	26.7						
Lane LOS			F	D						
Approach Delay (s)	0.0	0.0	47.3	•						
Approach LOS		•	E							
latersection Summany										
Average Delay		MANAGE STATES	19.3	COMPANY OF THE STREET, ST.	THE RESERVE THE PARTY OF THE PA	Crack Control of the	KTOKAN PERSENCIAL PERSENCIAL DESIGNA			PRODUCE OF THE PARTY
Intersection Capacity U	tilization		64.5%	10	CU Leve	el of Sa	rvice	С		
Analysis Period (min)	unz.auoH		15	, ,	CO LOVO	71 OI OC	14100	Ü		
/ waiysis r chod (mill)			10							

	→	•	€	₩	1	/			
Movemenic ve seems a	MEBIT	EBR	AWBL:	W/BTM	NBL	NBR			of plant of the second
Lane Configurations	∱•			€1	Y _y r				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	4.0			4.0	4.0		·		
Lane Util. Factor	1.00			1.00	1.00				
Frt	0.99			1.00	0.94				
Flt Protected	1.00	•		1.00	0.97				
Satd. Flow (prot)	1844			1856	1708				
Flt Permitted	1.00	1 1 1		0.80	0.97			27.0	
Satd. Flow (perm)	1844			1496	1708				
Volume (vph)	913	74	55	738	65	47		-	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		•	
Adj. Flow (vph)	1014	82	61	820	72	52			
RTOR Reduction (vph)	2	0	0	0	22	0		·	
Lane Group Flow (vph)	1094	0	. 0	881	102	0			
Turn Type			pm+pt						
Protected Phases	4		3	. 8	. 2				
Permitted Phases			8					•	•
Actuated Green, G (s)	94.1			94.1	11.7	-			
Effective Green, g (s)	95.1			95.1	12.7				
Actuated g/C Ratio	0.82			0,82	0.11				
Clearance Time (s)	5.0			5.0	5.0				
Vehicle Extension (s)	3.0			3.0	3.0				· · ·
Lane Grp Cap (vph)	1514			1229	187				
v/s Ratio Prot	c0.59				c0.06			,	•
v/s Ratio Perm			. ,	0.59					
v/c Ratio	0.72			0.72	0.54			· · · · · · · · · · · ·	
Uniform Delay, d1	4.6		•	4.5	48.8		·		
Progression Factor	1.00			1.00	1.00			•	
Incremental Delay, d2	1.7			2.0	3.2				
Delay (s)	6.3			6.5	52.0		•		
Level of Service	Α			Α	D			•	
Approach Delay (s)	6.3			6.5	52.0		· · · · · · · · · · · · · · · · · · ·		
Approach LOS	Α			Α	D				
hterseodon summar/	(and the later)	is time that his							
HCM Average Control D			9.1	-		vel of S	The state of the s	A	网络甘蔗州中华区域中国大学
HCM Volume to Capaci			0.70	•	IOW LO	VCI 01 0		7.	
Actuated Cycle Length (,		115.8	S	Sum of 6	ost time	(9)	8.0	
Intersection Capacity Ut		ı	97.3%			el of Se		F	
Analysis Period (min)		-	15	•	,	, _,	- · · · - ·	•	
c Critical Lane Group									

	*	-	7	•	←	*	4	†	-	1	↓	4
Movemeni	EBL	KEBII	e BBR	aWBI4	awbii)	Wer	WNBE	ANBII	HNIBIRE	: SB L	SBT	SER
Lane Configurations	` \	*	77	*	4			44			47	7
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	•		4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		-	0.99			0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1848			3444			3508	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00		•	0.99			0.99	1.00
Satd. Flow (perm)	1770	1863	1583	1770	1848			3444			3508	1583
Volume (vph)	213	747	227	. 39	534	31	148	431	68	90	413	221
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	237	830	252.	. 43	593	34	164	479	76	100	459	246
RTOR Reduction (vph)	0	0	89	0	2	0	0	6	0	0	0	0
Lane Group Flow (vph)	237	830	163	43	625	0	0	713	. 0	0	559	246
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		. 3	. 8		ź 2	. 2		6	- 6	
Permitted Phases			4	-								Free
Actuated Green, G (s)	14.0	69.7	69.7	7.3	63.0		17.1	26.0	٠.		18.0	141.0
Effective Green, g (s)	15.0	70.7	70.7	8.3	64.0		•	27.0			19.0	141.0
Actuated g/C Ratio	0.11	0.50	0.50	0.06	0.45	V 1	100	0.19		÷	0.13	1.00
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0			5.0			5.0	-
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		-	3.0	
Lane Grp Cap (vph)	188	934	794	104	839			659			473	1583
v/s Ratio Prot	c0.13	c0.45	×	0.02	c0.34		٠.	c0.21		4.	c0.16	*
v/s Ratio Perm		**	0.10		" .		. ,		•	٠.		0.16
v/c Ratio	1.26	0.89	0.20	0.41	0.75			1.08			1.18	0.16
Uniform Delay, d1	63.0	31.6	19.5	64.0	31.8	,		57.0			61.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	152.8	10.3	0.1	2.7	6.0		·	59.1			101.7	0.2
Delay (s)	215.8	41.9	19.7	66.7	37.7		١-	116.1			162.7	0.2
Level of Service	F	D	В	E	D			F			F	Α
Approach Delay (s)		68.9		•	39.6			116.1			113.1	
Approach LOS		Ε			Ď			F	•		F	
Intersection/Surrimary		seepht (Keri					rene la					
HCM Average Control D			83.1			el of Se	NO CONTRACTOR		F		MILE AND MARKET	学队外公司
HCM Volume to Capacit			0.98	1	ICIVI L.C.	/¢i ui Se	arvice		Г			
Actuated Cycle Length (141.0	c	Sum of k	ost time	(e)		12.0			
Intersection Capacity Ut		1	88.4%			el of Ser			12.0 E			
Analysis Period (min)	Lauoi	1	15		00 2000) OI OEI	VIOG		<u>ı_</u>			
c Critical Lane Group			10									
5 Official Earlie Oroup												

	۶		7	•	•	•	4	†	<i>></i>	-	↓	4
Movement (1)	WEBD!		WEBR	.WELL	(WBII)	WBR	NBL	ANBTA	ENBR4	(SBL	(SBT)	SBR
Lane Configurations		4>			4	7		414			<u>-</u> 4	7
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	54	449	93	14	241	219	114	325	251	47	28	137
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	60	499	103	16	268	243	127	361	279	52	31	152
Diraditon, læmer <i>i</i>	NEBA.	AWB 11	WE 2	NBA.	MB2	SEM.	SB2		100			
Volume Total (vph)	662	283	243	307	459	83	152					
Volume Left (vph)	60	- 16	0	127	0	- 52	0	•				
Volume Right (vph)	103	Ö	243	Ò	279	0	152					
Hadj (s)	-0.04	0.06	-0.67	0.24	-0.39	0.35	-0.67					
Departure Headway (s)	8.2	8.7	8.0	8.5	7.9	9.6	8.7					
Degree Utilization, x	1.51	0.68	0.54	0.73	1.01	0.22	0.37	,-		٠.		
Capacity (veh/h)	441	405	437	415	459	365	407			•		
Control Delay (s)	264.8	27.3	18.7	29.9	71.6	14.2	15.4					
Approach Delay (s)	264.8	23.3		54.9		14.9						
Approach LOS	F	, , C		F		. В					. No. 1	
Interesection Strangery	(180 (45 (18)))))					i vin		(197 <i>0</i>)				
Delay	THE REPORT OF THE PARTY OF THE	MARKET COMMITTEE	106.4	THE SAME SERVICE		MANINESS CONTRACTOR			A LOSS CONTRACTOR	CANAL DESCRIPTION OF THE PARTY		erous esons
HCM Level of Service	٠		F	: '	- 1 5 6	'. ·		:				
Intersection Capacity Ut	tilization		83.5%	. 10	CU Leve	of Ser	vice		Е	٠.		
Analysis Period (min)	CULION	. '.	15		20 2040	, 0, 00			L			."
Allaryois Forton (Ithir)			10			4.						

	٠		*	•	4—	4	1	†	~	1	↓	1
Viovementi	SERIO		MEBR	WBL)	W/Bir	WBR	NEW	NBII	NER	(SIBIL	(SIBIT)	SBR
Lane Configurations	ሻ	<u> </u>	Ħ		_ ↔			_ 1			†	
Sign Control Grade		Stop			Stop 0%			Free			Free	
Volume (veh/h)	435	0% 0	. 8	6	0	29	0	0% 234	0.	0	0% 129	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	483	0	9	7	0	32	0	260	ď	0	143	0
Pedestrians												
Lane Width (ft)			-								•	
Walking Speed (ft/s) Percent Blockage												
Right turn flare (veh)	÷					٠.	÷					
Median type		None			None :					,		
Median storage veh)										-	•	
Upstream signal (ft)										` .		•
pX, platoon unblocked	426	400	4.43	. 440	402	200	4.40	-		000		
vC, conflicting volume vC1, stage 1 conf vol	436	403	143	412	403	260	143	-		260		
vC2, stage 2 conf vol					1.1			•				
vCu, unblocked vol	436	403	143	412	403	260	143			260 260	-	
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free % cM capacity (veh/h)	5 509	100 536	99	99 54 5	100 536	96 7 79	100 1439			100 1 304		
	303 Market		304 002	U+U		iio Dimensional	, 14JJ	e digestion of the section of		1304	Tallera ellinasi i tann	·
Direction Jame #	483	9	39	260	143		c. 32 2041					
Volume Left	483	0		200.	143					•		
Volume Right	0	. 9	. 32	ő	0							
cSH	509	904	725	1700	1700							
Volume to Capacity	0.95	0.01	0.05	0.15	80.0			•				
Queue Length 95th (ft)	299	1	4	0	0							
Control Delay (s) Lane LOS	56.9 =	9.0 A	10.2 B	0.0	0.0							
Approach Delay (s)	56.0	. ^	10.2	0.0	0.0							
Approach LOS	F		В	0.0	0.0							
hitersection Summary				i (jago jago jago jago jago jago jago jago								
Average Delay		TOWN TO THE	29.9			SECTION OF SECTION					arakirak engilishi	W/1850ASV
Intersection Capacity Ut	ilization		49.7%	I	CU Leve	l of Ser	vice		Α			
Analysis Period (min)			15									

	۶	→	*	•	4	•	4	1	/	\	ļ	1
Mowariani.		<i>4</i> 5818	EBR	WEL	WBT.			NEIT	Ner	SBL	, SBT	SBR
Lane Configurations		1		75	†						41	
Sign Control	_	Stop			Stop			Stop			Stop	
Volume (vph)	0	124	46	320	168	0	0	0	0	464	188	100
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	138	51	356	187	0	0	0	0	516	209	111
Direction Lenge		AVV(B) (I	WB)2	(SB)	75B2							
Volume Total (vph)	189	356	187	620	216			-				
Volume Left (vph)	0	356	0	516	0						-	•
Volume Right (vph)	51	0	0	0	111							
Hadj (s)	-0.13	0.53	0.03	0.45	-0.33							
Departure Headway (s)	7.2	7.6	7.1	7.2	6.4							
Degree Utilization, x	0.38	0.75	0.37	1.24	0.39					-		
Capacity (veh/h)	492	472	503	507	550							
Control Delay (s)	14.5	28.4	12.9	147.3	12.2						100	
Approach Delay (s)	14.5	23.1		112.4								
Approach LOS	, : B	C		F							San ATS	
Variation We motivate that		à vivige de	1747			Alexandra Alexandra	again an	erita (de qui tot q		in the
Delay	3000		69.7			` -			-			
HCM Level of Service			F						W 13		•	
Intersection Capacity Uti	lization	r # Dire	62.8%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)	`		15									
			,			118					,1 ,	

	•	→	*	*	←	*	4	†	1	1	↓	1
Movernent	EBL		BBR	WBL	Part Manager	WBR	NBU	NBT	MAR	WSBL.	SBT	SBR
Lane Configurations	ሻ				_ 1>		<u>ነ</u>	*			્ર⇔	
Sign Control		Free		-	Free 0%			Stop		ē	Stop	
Grade Volume (veh/h)	519	0% 41	0	0	24	19	314	0% 44	19	3	0% 0	60
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	577	46	0.50	0.55	27	21	349	49	. 21	3	0.50	67
Pedestrians			_	-			. 0 .0.	,,		·	Ť	
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)								A 1			N.	
Median type						-		None			None	
Median storage veh) Upstream signal (ft)		•										
pX, platoon unblocked				•		,	•		· ·	. *		
vC, conflicting volume	48			46			1303	1247	46	1282	1236	37
vC1, stage 1 conf vol		19			72. "		-	-				
vC2, stage 2 conf vol			•	-	`	1.	•					
vCu, unblocked vol	48			46			1303	1247	46	1282	1236	37
tC, single (s)	. 4.1			4.1	12		7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)	2.0			2.2	-		. 2 =	. 4.0	2.2	2.5		2.2
tF (s) p0 queue free %	2.2 63	•	'	100			3.5	4.0 55	3.3 98	3.5 95	4.0 100	3.3 94
cM capacity (veh/h)	1559	. 5		1562			92	. 109	1024	. 66	111.	1035
		e a santa	AMERICA -	aroni Tribala	animyo k	270 B 21						
Direction Lene #	577	46	48	349	70	70						
Volume Total Volume Left	577 577	. 40	0	349 349	0	3		• •	100	•		
Volume Right	0,	. 0	21	. 0	21	67						
cSH	1559	1700	1700	92	150	611						
Volume to Capacity	0.37	0.03	0.03	3.81	0.47	0.11						•
Queue Length 95th (ft)	43	0	0	Err	54	10						
Control Delay (s)	8.7	0.0	0.0	Err	48.6	11.7						
Lane LOS	A		000	F	E	B						
Approach Delay (s) Approach LOS	0.8		0.0 8	3336.2 F		11.7 B						
· '	on discount and	A selection and a second		し 日本では大変なながら1922であ			None area in a second second	(1.5°a 3.0' - 2.0')		GIV SHI GANG FAR	C(140) (Kumanasarasar	Y (7 C)
Intersection Summary												
Average Delay	iliaeti		018.2 36.1%	1/	îll lave	d at Ca-	a de c		_			
Intersection Capacity Ut Analysis Period (min)	mzation		56.7% 15	R	CU Leve	e or Sel	vice		С			
Analysis renou (IIIII)			13									

	≯		*	•	4-	4	4	†	<i>/</i> *	1	↓	1
Movement			(EBR	WB	W.Bij	WWBIR)	NBUA		MBIR	SBI#	ાહાકા	SBR
Lane Configurations		_€17÷			_41≯						_ स	7
Sign Control		Free	-	-	Free	•		Stop			Stop	
Grade	0	0% 590	2	5	0% 3 01	0	5	0% 0	18	203	0% 1 17	598
Volume (veh/h) Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0.50	656	2	6	334	0.50	6	0.50	20	226	130	664
Pedestrians	Ū		-	Ū	•••	Ū	_			220	100	
Lane Width (ft)												
Walking Speed (ft/s)									•			
Percent Blockage					•							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)							-					
Upstream signal (ft)								-		. `		
pX, platoon unblocked vC, conflicting volume	334			658			1564	1002	329	693	1003	167
vC1, stage 1 conf vol	. 00-			. 000			100-	1002	020	000	1000	107
vC2, stage 2 conf vol	•		-	-				÷				
vCu, unblocked vol	334			658			1564	1002	329	693	1003	167
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												•
tF (s)	2.2	- "	,	2.2	•		3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			40	100	97	29	46	22
cM capacity (veh/h)	1222			926		,	9	240	667	318	239 .	848
Direction, Lence#h	(EB2)		WE 2	NBA	SB	SB2					
Volume Total	328.	330	173	167	26	356	664	•	, -			
Volume Left	0	0	6	0	6	226	0					
Volume Right	1222	4700	0	1700	20 41	0	664					
cSH Volume to Capacity	1222 0.00	1700 0.19	926 0.01	1700 0.10	0.63	284 1.25	848 0.78					
Queue Length 95th (ft)	0.00	0.19	0.01	0.10	57	422	201					
Control Delay (s)	0.0	0.0	0.3	0.0	189.9	176.3	22.8					
Lane LOS	0.0		A	-,-	F	F	Ċ					
Approach Delay (s)	0.0		0.2		189.9	76.3						
Approach LOS					F	F			•			
intersection Summary.												
Average Delay		- West Manual State	40.5		100000		- Cores And Anna Anna	A PROPERTY OF THE PARTY OF THE		A PROPERTY OF THE PARTY OF THE	AND STREET, ST	PASSAGE SHOWE
Intersection Capacity Ut	tilization		58.8%	j	CU Lev	el of Sei	vice		В			
Analysis Period (min)			15									

Movement EBI EBI EBI BBR WBI WBR NBI NBR SBI SB
Lane Configurations 1 1 4 7 1 7 1 7 1
Ideal Flow (vphpl) 1900
Lane Util. Factor 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.85 1.00 0.85 1.00 1.00 0.85 1.00 1.
Frt 1.00 0.87 1.00 0.85 1.00 1.00 0.85 Flt Protected 0.95 1.00 0.98 1.00 0.95 1.00 1.00 Satd. Flow (prot) 3433 1619 1819 1583 1770 1863 1583 Flt Permitted 0.95 1.00 0.98 1.00 0.95 1.00 1.00
Fit Protected 0.95 1.00 0.98 1.00 0.95 1.00 1.00 Satd. Flow (prot) 3433 1619 1819 1583 1770 1863 1583 Flt Permitted 0.95 1.00 0.98 1.00 0.95 1.00 1.00
Satd. Flow (prot) 3433 1619 1819 1583 1770 1863 1583 Flt Permitted 0.95 1.00 0.98 1.00 0.95 1.00 1.00
Flt Permitted 0.95 1.00 0.98 1.00 0.95 1.00 1.00
Satd. Flow (perm) 3433 1619 1819 1583 1770 1863 1583
Volume (vph) 661 18 122 43 47 70 234 47 14 0 0 0
Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9
Adj. Flow (vph) 734 20 136 48 52 78 260 52 16 0 0 0
RTOR Reduction (vph) 0 62 0 0 0 70 0 0 13 0 0 0
Lane Group Flow (vph) 734 94 0 0 100 8 260 52 3 0 0 0
Turn Type Split Split Perm Split Perm
Protected Phases 2 2 6 6 4 4
Permitted Phases 6 4
Actuated Green, G (s) 42.5 42.5 8.3 16.2 16.2 16.2
Effective Green, g (s) 43.5 43.5 8.3 16.2 16.2 16.2
Actuated g/C Ratio 0.54 0.54 0.10 0.10 0.20 0.20 0.20
Clearance Time (s) 5.0 5.0 4.0 4.0 4.0 4.0 4.0
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0
Lane Grp Cap (vph) 1867 880 189 164 358 377 321
v/s Ratio Prot c0.21 0.06 c0.05 c0.15 0.03
v/s Ratio Perm 0.01 0.00
v/c Ratio 0.39 0.11 0.53 0.05 0.73 0.14 0.01
Uniform Delay, d1 10.6 8.8 34.0 32.3 29.8 26.2 25.5
Progression Factor 0.39 0.37 1.00 1.00 1.00 1.00
Incremental Delay, d2 0.5 0.2 2.7 0.1 7.2 0.2 0.0
Delay (s) 4.6 3.4 36.7 32.4 37.0 26.3 25.5
Level of Service A A D C D C C
Approach Delay (s) 4.4 34.8 34.7 0.0
Approach LOS A C C A
Intelisection Sunnmany
HCM Average Control Delay 15.4 HCM Level of Service B
HCM Volume to Capacity ratio 0.49
Actuated Cycle Length (s) 80.0 Sum of lost time (s) 12.0
Intersection Capacity Utilization 46.7% ICU Level of Service A
Analysis Period (min) 15
c Critical Lane Group

		-	-	***	*	•					
Movement	BBL		WBT.	WBR	SBL	ASBR	a de la co	r en			
Lane Configurations	BASIN ON APPLICATION	A	^	2440000	*	#	THE SECTION OF THE	OLIS SE SACHASHOUS BRICES	30305385285519	STRONG SACT TOOL STRONG	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					
Total Lost time (s)		4.0	4.0		4.0	4.0					
Lane Util. Factor		1.00	1.00		1.00	1.00			-		
Frt		1.00	1.00		1.00	0.85		`			
Flt Protected		1.00	1.00		0.95	1.00				i	
Satd. Flow (prot)		1863	1863	•	1770	1583					
Flt Permitted		1.00	1.00		0.95	1.00					-
Satd. Flow (perm)		1863	1863		1770	1583				•	
Volume (vph)	0	805	262	0	32	623					
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90				*	
Adj. Flow (vph)	0	894	291	0	36	692					=
RTOR Reduction (vph)	0	0	Ó	0	0	457	•				
Lane Group Flow (vph)	0	894	291	. 0	36	235		-			•
Turn Type						Perm					*
Protected Phases		2	6		4			٠, ,			2.00 2.00
Permitted Phases	,					4					
Actuated Green, G (s)		56.2	56.2		15.8	15.8				• •	•
Effective Green, g (s)		56.2	56.2		15.8	15.8				•	
Actuated g/C Ratio		0.70	0.70		0.20	0.20			p.		• •
Clearance Time (s)		4.0	4.0		4.0	4.0					
Vehicle Extension (s)	٠.	3.0	3.0		3.0	3.0					·
Lane Grp Cap (vph)		1309	1309		350	313					
v/s Ratio Prot	5 1 1 1	c0.48	0.16		0.02	1.					
v/s Ratio Perm						c0.15					
v/c Ratio		0.68	0.22		0.10	0.75				`	
Uniform Delay, d1		6.8	4.2		26.3	30.2					
Progression Factor		1.00	0.26		1.00	1.00			27.4		
Incremental Delay, d2		2.9	0.3		0.1	9.5					
Delay (s)		9.7	1.4		26.4	39.7	•				
Level of Service		A	A		С	D					
Approach Delay (s)		9.7	1.4		39.0						
Approach LOS		Α	Α		D						
intersection/Summary											
HCM Average Control D	elay		19.6		ICM Le	vel of S	ervice		B		
HCM Volume to Capacit	ty ratio		0.70								
Actuated Cycle Length (80.0			ost time			8.0		•
Intersection Capacity Ut	ilization	١.	59.0%	. [6	CU Lev	el of Se	rvice		В		
Analysis Period (min)			15								
c Critical Lane Group											

	-	*	€	4	4						
V[6V]njan	EBT	EBR.	-WBIS	WBT		NBR.					
Lane Configurations	1	Service and a service of the service	*	^	k#	, and a control of	Mercol Course China China Control Control	Comment of Comment		or lead to the second of the second	en crasings as
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					
Total Lost time (s)	4.0		4.0	4.0	4.0				·		
Lane Util. Factor	1.00		1.00	1.00	1.00						
Frt	0.99		1.00	1.00	0.94						
Fit Protected	1.00	*	0.95	1.00	0.97					٠.	
Satd. Flow (prot)	1850		1770	1863	1699						
FIt Permitted	1.00		0.95	1.00	0.97				•		
Satd. Flow (perm)	1850		1770	1863	1699						
Volume (vph)	685	37	.21	818	103	93 .		* -	٠.		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90					
Adj. Flow (vph)	761	41	23	909	114	103					
RTOR Reduction (vph)	2	0	0	0	49	0					
Lane Group Flow (vph)	800	0	23	909	168	. 0		<u> </u>			
Turn Type			Prot	0		÷	-				
Protected Phases	4	3.00	. 3	. 8	2	• •					
Permitted Phases	24.6			40.6	. 40.4						
Actuated Green, G (s)	34.6 34.6		2.0	40.6 40.6	10.4 10.4			., .			4.
Effective Green, g (s)	0.59	e a company	0.03	0.69	0.18		s v	-		-	:
Actuated g/C Ratio Clearance Time (s)	4.0	.5y	4.0	4.0	4.0		T	÷		9.1	
Vehicle Extension (s)	3.0		3.0	3.0	3.0				1		
Lane Grp Cap (vph)	1085		60	1282	299						
v/s Ratio Prot	0.43		0.01	c0.49	c0.10						
v/s Ratio Perm	. 0.70	: .	0.0 1	00.40	00.10						
v/c Ratio	0.74	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.38	0.71	0.56						
Uniform Delay, d1	8.9		27.9	5.6	22.2		eri e e		-		
Progression Factor	1.00		1.00	1.00	1.00						
Incremental Delay, d2	2.6	7	4.0	1.8	2.4					•	
Delay (s)	11.5		31.9	7.4	24.6						
Level of Service	В		С	À	C						
Approach Delay (s)	11.5			8.0	24.6	*					
Approach LOS	В			Α	С		·				
Intersection Summary	r in march						Kara Yan Marin Bara				
HCM Average Control D		AANGO OO GAAGAA AANGO AA	11.3		ICM Le	vel of S		CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAM	B	W. G. S.	REAL PROPERTY.
HCM Volume to Capacit			0.68		10111 20		31 VIGO				
Actuated Cycle Length (59.0		Sum of I	lost time	(s)	ė.	.0		
Intersection Capacity Ut		n	61.1%			el of Sei			В		
Analysis Period (min)			15					•		•	
c Critical Lane Group											
									,		

	۶	-	•	•	←	*	4	†	<i>></i>	\	↓	4
Mexement - Francisco	WEB	. EBI?	EBR	aWBL	WBii	WBR		MNBT	NBR:	SBL	(SB)	SBR
Lane Configurations	797	†	7	ኻ	1>			414			41	7
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	3433	1863	1583	1770	1843			3425			3494	1583
Flt Permitted	0.95	1.00	1.00	0.95	. 1.00			0.99		•	0.99	1.00
Satd. Flow (perm)	3433	1863	<u> 1583</u>	1770	1843			3425			3494	1583
Volume (vph)	140	497	25	37	653	50	152	352	76	101	285	44
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	. 156	552	28	41	726	56	169	391	84	112	317	49
RTOR Reduction (vph)	0	0	15	0	2	0	0	11	0	0	0	0
Lane Group Flow (vph)	156	552	13	41	780	0	0	633	. 0	- 0	429	49
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		3	8		2	2		6	6	. :
Permitted Phases			4				-			•		Free
Actuated Green, G (s)	7.9	52.9		3.6	48.6			21.6	-		14.8	110.9
Effective Green, g (s)	7.9	52.9	52.9	3.6	48.6			22.6			15.8	110.9
Actuated g/C Ratio	0.07	0.48	0.48	0.03	. 0.44	· .		0.20		: -	0.14	1.00
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	<u>. </u>	<u> </u>	3.0		- ···	3.0	٠.
Lane Grp Cap (vph)	245	889	755	57	808			698			498	1583
v/s Ratio Prot	c0.05	0.30		0.02	c0.42			c0.18			c0.12	
v/s Ratio Perm	,		0.01		•		•			'		0.03
v/c Ratio	0.64	0.62	0.02	0.72	0.97			0.91			0.86	0.03
Uniform Delay, d1	50.1	21.5	15.3	53.1	30.3			43.1			46.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	٠		1.00			1.00	1.00
Incremental Delay, d2	5.3	1.4	0.0	35.1	23.2			15.4			14.2	0.0
Delay (s)	55.4	22.9	15.3	88.2	53.6		i	58.5	٠.		60.7	0.0
Level of Service	E	C	В	F	Ď			E			E	Α
Approach Delay (s)		29.5	.*		55.3			58.5			54.5	
Approach LOS		С			E			E			D	
intersection Summary	(Aggregation)	White She She			etti (j. 1847.)			and the second			4 10 UST 12 Y	
HCM Average Control [48.8	TOTAL STATE OF THE	ICM Le	vel of S	ervice		D	ACTIVITIES SHOWN	AND DESIGNATION OF THE PARTY OF	MAN HIM SHAPE
HCM Volume to Capaci	•		0.91	•	10111 20	V () () ()	01 1100		13			
Actuated Cycle Length			110.9	9	Sum of I	ost time	(e)		16.0	•		
Intersection Capacity U		1	82.1%			el of Se			E			
Analysis Period (min)	,_0,,01	-	15	•					_	-		
c Critical Lane Group												
								•				

-	1	-	*	•	₩	*	4	†	<i>></i>	-	ļ	4
<u> Movemen</u>	EBL.	EBIN	EBR	WBL.	WBT	WBR	NBL	NBIT	NBR	SBL	a SBT	SBR
Lane Configurations		€1 }			4	7		4î			4	7
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Util. Factor		0.95			1.00	1.00		0.95		. ′	1.00	1.00
Frt		0.97			1.00	0.85		0.97			1.00	0.85
Flt Protected		0.98	•		1.00	1.00		1.00			0.98	1.00
Satd. Flow (prot)		3384			1856	1583		3432			1817	1583
FIt Permitted		0.75			0.96	1.00		0.92			0.67	
Satd. Flow (perm)		2594			1792	1583		<u> 3187</u> _			1243	1583
Volume (vph)	100	149	58	26	331	539	58	495	117	.35	35	83
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	111	166	64	29	368	59 9	64	550	130	. 39	39	92
RTOR Reduction (vph)	0	27	0	0	0	72	0	19	0	0	0	58
Lane Group Flow (vph)	0	314	0	0	397	527	0	725	0	0	78	34
Turn Type	Perm			Perm	_	Perm	Perm	_		Perm		Perm
Protected Phases	. :	4			. 8			2		· · · · · · · · · · · · · · · · · · ·	6 -	
Permitted Phases	4	24.5		8		8	2			6		6
Actuated Green, G (s)	•	21.8			21.8	21.8		17.5			17.5	17.5
Effective Green, g (s)		21.8			21.8	21.8		17.5			17.5	17.5
Actuated g/C Ratio		0.46	· .		0.46	0.46	1 *	0.37	:		0.37	0.37
Clearance Time (s)		4.0		, ,	4.0	4.0	a e e	4.0			4.0	4.0
Vehicle Extension (s)		3.0	·		3.0	3.0	- ' '	3.0	·	<u> </u>	3.0	3.0
Lane Grp Cap (vph)		1196			826	730		1179			460	586
v/s Ratio Prot		0.40			0.00	-0.00		0.00			0.00	0.00
v/s Ratio Perm		0.12	3		0.22	c0.33		c0.23			0.06	0.02
v/c Ratio	. 7	0.26	• 1	-	0.48	0.72		0.62			0.17	0.06
Uniform Delay, d1		7.8			8.8	10.3		12.2			10.0	9.6
Progression Factor	•	1.00	•		1.00	1.00		1.00			1.00	1.00
Incremental Delay, d2		0.1			0.4	3.5		1.0			0.2	0.0
Delay (s)		7.9		•	9.3	13.8		13.1			10.2	9.6
Level of Service		A			A	В		B			В	Α
Approach Delay (s)		7.9			12.0			13.1	- '		9.9	
Approach LOS		Α			В			В			Α	
Intersection Summary/					200							
HCM Average Control E	elay 💮		11.6	Н	ICM Le	vel of S	ervice		В			
HCM Volume to Capaci			0.67						-			•
Actuated Cycle Length			47.3			ost time			8.0			
Intersection Capacity U	ilization	1	71.4%	10	CU Lev	el of Se	rvice		С			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	-	*	•	4	•	4	†	/	-	↓	-√
Move in and the constant	EB B	JEB F) BBR	WBL	WBT	WBR*	NBL	ENBIB	enbr	SBL	ØSB∏Ø	SBR
Lane Configurations	*	4			4			†			↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0			4.0			4.0	
Lane Util. Factor	0.95	0.95			1.00			1.00			1.00	
Frt	1.00	0.98			0.91			1.00			1.00	
Fit Protected	0.95	0.96			0.98			1.00		11	1.00	
Satd. Flow (prot)	1681	1658			1669			1863			1863	
Flt Permitted	0.74	0.74		_	0.89			1.00			1.00	
Satd. Flow (perm)	1310	1281			1508			1863			1863	
Volume (vph)	270	0	. 25	8	0	15	0	392	0	0	127	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	300	. 0	28	9	0.	17	. 0	436	0	0	. 141	0
RTOR Reduction (vph)	0	15	0	0	13	0	0	0	0	0	0	0
Lane Group Flow (vph)	151	162	0	0	13	. 0	0	436	. 0	0	141	0
Turn Type	Perm			Perm								
Protected Phases		4		_	. 8			2		. 2	6	
Permitted Phases	4			8								
Actuated Green, G (s)	9.7	9.7	t films		9.7		-	21.0			21.0	
Effective Green, g (s)	9.7	9.7			9.7			21.0			21.0	
Actuated g/C Ratio	0.25	0.25	e jit		0.25			0.54			0.54	
Clearance Time (s)	4.0	4.0			4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0	- 10 - E		3.0			3.0			3.0	-
Lane Grp Cap (vph)	328	321			378			1011			1011	
v/s Ratio Prot				-				c0.23			0.08	
v/s Ratio Perm	0.12	c0.13			0.01							
v/c Ratio	0.46	0.50			0.04		· •	0.43		•	0.14	
Uniform Delay, d1	12.3	12.4			11.0			5.3			4.4	
Progression Factor	1.00	1.00			1.00	6.2		1.00	-		1.00	
Incremental Delay, d2	1.0	1.3			0.0			0.3			0.1	
Delay (s)	13.3	13.7		,	11.0			5.6			4.4	
Level of Service	В	В			В			A			A	
Approach Delay (s)	-	13.5			11.0			5.6		1.	4.4	
Approach LOS		В			В			Α			Α	
intersection/Summary												
HCM Average Control D			8.4	1	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capacit			0.45									
Actuated Cycle Length (,		38.7			ost time			8.0			
Intersection Capacity Ut	ilization	i	42.2%	10	CU Lev	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	*	•	4	•	4	†	1	-	↓	4
Vioxemen)	EBL	EBIL	ZEBR	TWBL	WBT	Weir.	INBLA	TEINE	NBR	SBL	SBR*	SBR
Lane Configurations		7>		} î	†						44	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	•	4.0	4.0	,		•			4.0	
Lane Util. Factor		1.00		1.00	1.00						0.95	
Frt		0.94		1.00	1.00						0.99	
Flt Protected		1.00		0.95	1.00			-	-		0.98	
Satd. Flow (prot)		1758		1770	1863						3409	
FIt Permitted		1.00		0.95	1.00						0.98	
Satd. Flow (perm)		1758		1770	1863						3409	
Volume (vph)	. 0	115	83	371	104	. 0	0	0	. 0	194	172	36
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	128	92	412	. 116	. 0	. 0	, 0	0	216	191	40
RTOR Reduction (vph)	0	33	0	0	0	0	0	0	0	0	9	0
Lane Group Flow (vph)	0	187	0	412	116	0	0	. 0	0 -	0	438	0
Turn Type				Prot						Split		
Protected Phases		2	₁	1	. 6					4	4	
Permitted Phases												
Actuated Green, G (s)	* .	11.2		17.3	32.5		:				12.2	
Effective Green, g (s)		11.2		17.3	32.5						12.2	
Actuated g/C Ratio		0.21		0.33	0.62		11 15 1				0.23	
Clearance Time (s)		4.0	,	4.0	4.0						4.0	
Vehicle Extension (s)	·	3.0		3.0	3.0		•			<u> </u>	3.0	
Lane Grp Cap (vph)		374		581	1149						789	
v/s Ratio Prot		c0.11		c0.23	0.06						c0.13	
v/s Ratio Perm												
v/c Ratio		0.50		0.71	0.10	2					0.55	
Uniform Delay, d1		18.3		15.5	4.1						17.9	
Progression Factor		1.00		1.00	1.00						1.00	
Incremental Delay, d2		1.1		4.0	0.0						8.0	
Delay (s)		19.3		19.5	4.2			·			_. 18.7	
Level of Service		В		В	Α						В	
Approach Delay (s)		19.3	•	- 1	16.1			0.0			18.7	
Approach LOS		₿			В			Α			В	
intersection Summary	he Parti				r de soir de							
HCM Average Control D		And Heart And	17.7	A THE PARTY OF THE	ICM Le	vel of Se	rvice	A STATE OF THE STATE OF THE	В	nayoyanan yana ayaa	Carrier and Audit Con. Art.	assider out alread
HCM Volume to Capaci	•		0.61									
Actuated Cycle Length (52.7	5	Sum of l	ost time	(s)		12.0			
Intersection Capacity Ut			53.2%			el of Ser			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	*	→	*	•	←	*	4	†	1	/	ļ	4
XIoXemen:	EBU	EBT	EBR	WBL)	WBIP	WBR	ENBIR	INBI	NBR	SBL	SBI	SBR
Lane Configurations	44	†			1 >		ሻ	1>			€}•	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	. 1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Lane Util. Factor	0.97	1.00			1.00		1.00	1.00.			1.00	
Frt	1.00	1.00			0.94		1.00	0.96			0.87	
Fit Protected	0.95	1.00	-		1.00	-	0.95	1.00			1.00	
Satd. Flow (prot)	3433	1863			1745		1770	1784			1612	
Flt Permitted	0.95	1.00		•	1.00		0.59	1.00	٠.		1.00	
Satd. Flow (perm)	3433	1863			1745		1108	1784			1611	
Volume (vph)	705	17.		0	29	25	216	25	- 10	1	0	173
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	783	19	0.	. 0	32	28	240	28	11	_ 1	0	192
RTOR Reduction (vph)	0	Ô	0	0	23.	0	0	8	0	0	142	0
Lane Group Flow (vph)	783	19	0	, 0	37	0	240	31	. 0	0	51	0
Turn Type	Prot						Perm			Perm		
Protected Phases	5	2.	,		6		100	8			4	-
Permitted Phases							8			4		
Actuated Green, G (s)	18.3	32.0			9.7		14.2	14.2	1.1		14.2	
Effective Green, g (s)	18.3	32.0			9.7		14.2	14.2			14.2	
Actuated g/C Ratio	0.34	0.59			0.18	40 40 - 28 - 34	0.26	0.26			0.26	
Clearance Time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		- 1 - 12	3.0	· ·
Lane Grp Cap (vph)	1159	1100			312		290	467			422	
v/s Ratio Prot	c0.23	0.01			c0.02			0.02	*	-		
v/s Ratio Perm							c0.22				0.03	
v/c Ratio	0.68	0.02			0.12		0.83	0.07	. ,		0.12	
Uniform Delay, d1	15.4	4.6			18.7		18.8	15.0			15.2	
Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00	•
Incremental Delay, d2	1.6	0.0			0.2		17.3	0.1			0.1	
Delay (s)	17.0	4.6			18.8	•	36.2	15,1			15.4	
Level of Service	В	Α			В		D	В			В	
Approach Delay (s)		16.7			18.8	-		33.2			15.4	
Approach LOS		В			В			С			В	
linterise orijom Sumimaliy 4					u in Arm			No.				
HCM Average Control D			20.1	<u> </u>	ICM Le	vel of S	ervice	econ process a servicion	С	A. A.	DE SECTION SANS	A THE PARTY OF STREET
HCM Volume to Capacit	-		0.60	-					_			
Actuated Cycle Length (54.2	5	Sum of I	ost time	(s)		12.0	=		
Intersection Capacity Ut		l	59.5%			el of Se			В			
Analysis Period (min)			15						=			
c Critical Lane Group												
1												

	٠		•	•	←	*	4	†	<i>></i>	-	↓	4
Movement.	EBU	(EBIT	MEBR.	WBL	WBT)	W/BR	NEL	NETT	ANBR.	SBL#	SET	SBR
Lane Configurations		↑ ↑			41			₩			र्स	7"
ideal Flow (vphpl)	1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	4.0
Lane Util. Factor		0.95			0.95			1.00			1.00	1.00
Frt		1.00			1.00			0.88			1.00	0.85
Flt Protected		1.00	,		1.00			0.99			0.97	1.00
Satd. Flow (prot)		3539			3537			1630			1807	1583
Flt Permitted		1.00		-	0.94	-		0.97	•		0.82	1.00
Satd. Flow (perm)		3539			3336			1592			1521	1583
Volume (vph)	0	838	1	5	357	0.	2	0	14	62	. 38	341
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	931	1	6	397	0	2	, 0 .	16	69	42	379
RTOR Reduction (vph)	0	0	0	0	0	.0	0	12	0	0	0	244
Lane Group Flow (vph)	0	932	0	0	403	0	0	6	0.		111	135
Turn Type		_		Perm			Perm			Perm		Perm
Protected Phases	- '	. 2	: .		6			8			4	
Permitted Phases		457.4		6			. 8		,	4		4
Actuated Green, G (s)		17.1	197 1 mg		17.1			9.2			9.2	9.2
Effective Green, g (s)		17.1	24		17.1			9.2			9.2	9.2
Actuated g/C Ratio		0.50	ri r		0.50			0.27	٠		0.27	0.27
Clearance Time (s)		4.0			4.0			4.0			4.0	4.0
Vehicle Extension (s)		3.0		<u> </u>	3.0			3.0			3.0	3.0
Lane Grp Cap (vph)		1764			1663			427			408	425
v/s Ratio Prot		c0.26		•			. :	0.00	٠.			0.00
v/s Ratio Perm		0 50			0.12		_	0.00			0.07	c0.09
v/c Ratio		0.53		****	0.24	:		0.01			0.27	0.32
Uniform Delay, d1		5.9			4.9			9.2			9.9	10.0
Progression Factor		1.00			1.00			1.00	,	,	1.00	1.00
Incremental Delay, d2		0.3			0.1			0.0			0.4	0.4
Delay (s)		6.1			5.0	0.0		9.2			10.3	10.5
Level of Service		Α			. A			A			B	В
Approach Delay (s)		6.1			5.0	,		9.2			10.4	
Approach LOS		Α			Α			Α			В	
Interseo jem Summerv												
HCM Average Control [7.1	F	ICM Le	vel of S	ervice		Α			
HCM Volume to Capaci	ity ratio		0.45									
Actuated Cycle Length			34.3			lost time			8.0			
Intersection Capacity U	tilizatior	1	44.5%	11	CU Lev	el of Se	rvice		Α			
Analysis Period (min)			15									
c Critical Lane Group				•								

	٠	→	•	•		*	1	†	1	-	↓	4
ViloVejanteint	YEBU	EBT		a,V/BLS	. WBit	W BR	MBL	NBT	ANER	√SB E∧	SBI	SBR
Lane Configurations	7575	<u>}</u>			4	7	75	<u></u>	7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	0.97	1.00			1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.90	·		1.00	0.85	1.00	1.00	0.85			
Flt Protected	0.95	1.00	• '		0.97	1.00	0.95	1.00	1.00	•		
Satd. Flow (prot)	3433	1679			1814	1583	1770	1863	1583			
Flt Permitted	0.95	1.00			0.97	1.00	0.95	1.00	1.00			
Satd. Flow (perm)	3433	1679			1814	1583	1770	1863	1583			
Volume (vph)	723	104	202	24	21	31	142	37	. 49	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	803	116	224	27	23	34	158	41	54	. 0	. 0	. 0
RTOR Reduction (vph)	0	55	0	0	0	31	0	0	45	0	0	0
Lane Group Flow (vph)	803	285	0	0	50	3	158	41	9	0	0	0
Turn Type	Split			Split		Perm	Split		Perm			
Protected Phases	2	2		6	6		: 4	. '4		. 9		
Permitted Phases				*		6		•	4			
Actuated Green, G (s)	47.8	47.8			6.5	6.5	12.7	12.7	12.7			
Effective Green, g (s)	48.8	48.8			6.5	6.5	12.7	12.7	12.7		. ,	
Actuated g/C Ratio	0.61	0.61			0.08	0.08	0.16	0.16	0.16			
Clearance Time (s)	5.0	5.0	15.44		4.0	4.0	4.0	4.0	4.0			
Vehicle Extension (s)	3.0	3.0		200	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	2094	1024			147	129	281	296	251			
v/s Ratio Prot	c0.23	0.17			c0.03		c0.09	0.02		: .		
v/s Ratio Perm		77.7.	** **		-	0.00	7 7.17		0.01		. `	• •
v/c Ratio	0.38	0.28	٠	1.	0.34		0.56	0.14	0.03			
Uniform Delay, d1	7.9	7.3		- " '	34.7	33.8	31.1	28.9	28.5			
Progression Factor	0.56	0.40		-,	1.00	1.00	1.00	1.00	1.00			,
Incremental Delay, d2	0.3	0.4		-	1.4	0.1	2.6	0.2	0.1	٠, .		-
Delay (s)	4.8	3.4			36.1	33.9	33.6	29.2	28.5			
Level of Service	A	Á			D	С	С	C	C			
Approach Delay (s)		44		100	35.2			31.8			0.0	
Approach LOS	, ,	A		•	D	Y		С		• •	Α	
		e e e grande e e e e e e e e e e e e e e e e e e		a residence de la company	(W.) Allen Southers			angeren en e			Marka Arranga (Marka)	VANCHADAHAN MATER
Intersection/Summany							Carrier Chin					州湖湾城
HCM Average Control [-		10.8	ł	HCM Le	evel of S	ervice		В			
HCM Volume to Capaci			0.41						40.0			
Actuated Cycle Length			80.0			lost time	• /		12.0			
Intersection Capacity U	unzation	•	41.8%	١	CU Lev	el of Se	rvice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	←	4	-	4				_	
Moxement .	dell.	HBI	WBT	WBR	SEL	SER	200	1480			
Lane Configurations		•	†		ሻ	7					
Ideal Flow (vphpl)	1900	1900		_ 1900	1900	1900					
Total Lost time (s)		4.0	4.0		4.0	4.0					
Lane Util. Factor		1.00			1.00	1.00		•		•	
Frt		1.00	1.00		1.00	0.85					
Flt Protected		1.00 ⁻	1.00	-	0.95	1.00			- 1		
Satd, Flow (prot)		1863	1863		1770	1583					
FIt Permitted		1.00	1.00		0.95	1.00		4 .			
Satd. Flow (perm)		1863	1863		1770	1583					
Volume (vph)	0	971	160	0	122	654					
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90					
Adj. Flow (vph)	0	1079	178	0	136	727	•				
RTOR Reduction (vph)	0	0	0	0	0	605					
Lane Group Flow (vph)	. 0	1079	178	0	136	122					
Turn Type	<u>-</u>					Perm					
Protected Phases		. 2	6		. 4						
Permitted Phases						4					
Actuated Green, G (s)		58.6	58.6		13.4	13.4					
Effective Green, g (s)		58.6	58.6		13.4	13.4				•	
Actuated g/C Ratio	14.	0.73	0.73		0.17	0.17		•			
Clearance Time (s)		4.0	4.0		4.0	4.0					
Vehicle Extension (s)		3.0	- 3.0	•	3.0	3.0					
Lane Grp Cap (vph)		1365	1365		296	265					
v/s Ratio Prot	100	c0.58	0.10		0.08						
v/s Ratio Perm	·					c0.08		. , .			
v/c Ratio	1	0.79	0.13		0.46	0.46					
Unitorm Delay, d1		6.8	3.2	•	30.0	30.0				••	.,
Progression Factor		1.00	0.14		1.00	1.00					
Incremental Delay, d2		4.7	0.2		1.1	1.3					
Delay (s)		11.5	0.6		31.2	31.3					
Level of Service		B	A		C	С					•
Approach Delay (s)		11.5	0.6		31.3	•	-				
Approach LOS		В	Α		C	•			•		
Intersection Summany	i esvissim					Studies in	(A. 1811)		26年18年18月	m <i>istrživit</i> io	
HCM Average Control D			18.7	ing and the second s	ICM Le	vel of S	ervice		B		
HCM Volume to Capaci	•		0.73	•	. 5.77 =0		J. 1100		5		
Actuated Cycle Length (80.0	ç	Sum of I	ost time	: : (s)		8.0		
Intersection Capacity Ut		1	64.5%			el of Se			C.C		
Analysis Period (min)		•	15	•					~		
c Critical Lane Group			, ,								
- 0,,,,om, 20,,o 0,oup											

	\rightarrow	*	*	4-	1	_					
Movaniality	MEBIT	BEBR!	ANABIE	AW/BIT	WAN BILL	MBR					
Lane Configurations	\$		*	†	\						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			-		
Total Lost time (s)	4.0		4.0	4.0	4.0						
Lane Util. Factor	1.00		1.00	1.00	1.00		÷				
Frt	0.99		1.00	1.00	0.94						
Flt Protected	1.00		0.95	1,00	0.97	٠.	•			•	
Satd. Flow (prot)	1844		1770	1863	1708						
Flt Permitted	1.00		0.95	1.00	0.97			4			
Satd. Flow (perm)	1844		1770	1863	1708						
Volume (vph)	913	74	55	738	65	. 47					
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90					
Adj. Flow (vph)	1014	82	61	. 820	72	52					
RTOR Reduction (vph)	2	. 0	0	0	25	0					
Lane Group Flow (vph)	<u> 1094</u>	0	61	820	99	0		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Turn Type			Prot		_						
Protected Phases	. 4		·. 3	8	. 2						
Permitted Phases											
Actuated Green, G (s)	69.7			. 79.2	10.9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Effective Green, g (s)	69.7		5.5	79.2	10.9						
Actuated g/C Ratio	0.71	1.72	0.06	0.81	0.11						,
Clearance Time (s)	4.0		4.0	4.0	4.0						
Vehicle Extension (s)	3.0		3.0	3.0	3.0						
Lane Grp Cap (vph)	1310		99	1504	190	,					
v/s Ratio Prot	c0.59		0.03	c0.44	c0.06	÷					
v/s Ratio Perm	0.04		0.00	0.55	0.50						
v/c Ratio	0.84		0.62		0.52						
Uniform Delay, d1	10.1		45.3	3.3	41.1						
Progression Factor	1.00		1.00	1.00	1.00			÷ .	÷		
Incremental Delay, d2	4.8		10.9	0.4	2.6						
Delay (s) Level of Service	14.9 B	·	56.1 E	3.7	43.7						•
	14.9			A 7.3	D 43.7						
Approach Delay (s) Approach LOS	14.9 B			7.3 A	43.7 D						
Approach LOS	Ь			A	U						
Intersection Summary											
HCM Average Control D			13.4	ŀ	ICM Le	vel of Se	ervice	В			
HCM Volume to Capaci	•		0.79								
Actuated Cycle Length	. ,		98.1		Sum of le			12.0			
Intersection Capacity Ut	tilization	1	65.7%	į.	CU Leve	el of Se	rvice	С			
Analysis Period (min)			15								
c Critical Lane Group			•								

	۶	→	•	*	-	4	4	1	1	-	1	4
<u> Movameni</u>	#EBL	HEBIJA	BBR.	WBL	WWBT	WBR/	NBL	ANBAR	NER.	SBL	SET	#SBR
Lane Configurations	14.54	†	7	74	1>			414			41	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	3433	1863	1583	1770	1848			3444			3508	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Said. Flow (perm)	3433	1863	1583	1770	1848			3444			3508	1583
Volume (vph)	213	747	227	39	534	31	148	431	68	90	413	221
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	237	830	252	43	593	34	164	479	76	100	459	246
RTOR Reduction (vph)	0	Ô	101	0	2	0	0	8	0	0	0	0
Lane Group Flow (vph)	237	830	151	43	625	0	0	711	0	0.	559	246
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4	225, 37	3	8	٠	2	2		6	6	
Permitted Phases			4					•				Free
Actuated Green, G (s)	. 10.6	53.1	53.1	3.1	45.6	7		24.1			19.1	117.4
Effective Green, g (s)	10.6	53.1	53.1	3.1	45.6			25.1			20.1	117.4
Actuated g/C Ratio	0.09	0.45	0.45	0.03	0.39			0.21			0.17	1.00
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		<u>.</u>	3.0	
Lane Grp Cap (vph)	310	843	716	47	718			736			601	1583
v/s Ratio Prot	c0.07	c0.45		0.02	0.34		. 74.	c0.21			c0.16	•
v/s Ratio Perm			0.10									0.16
v/c Ratio	0.76	0.98	0.21	0.91	0.87			0.97			0.93	0.16
Uniform Delay, d1	52.2	31.7	19.5	57.0	33.2			45.7			48.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	10.7	27.0	0.1	98.6	11.2			24.9			21.2	0.2
Delay (s)	62.9	58.7	19.6	155.6	44.4			70.6			69.1	0.2
Level of Service	E	E	В	F	Ď			E			E	Α
Approach Delay (s)		52.0			51.5		. ,	70.6			48.1	
Approach LOS		D			D			Ė			D	
intersection Summary in		(Company										1.00
HCM Average Control D			54.8	F	ICM Le	vel of Se	ervice	- Contractor	D		A STEERING OF STREET	September (September 1
HCM Volume to Capacit			0.97		-	-						
Actuated Cycle Length (•		117.4	S	um of I	ost time	(s)		16.0			
Intersection Capacity Ut	,	+	88.4%			el of Ser			Ε			
Analysis Period (min)			15	•				•				
c Critical Lane Group												

	<i>></i>		•	•	←	•	4	†	<i>></i>	-	↓	4
Movement - 4	EBL.	EBI	BBR)	WBIL.	WBT	WBR.	MBL	NBT.	ANBR	SBL	SBIL	SBR
Lane Configurations		€ 1₽			4	7		4 1>			4	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Util. Factor		0.95			1.00	1.00		0.95			1.00	1.00
Frt		0.98			1.00	0.85		0.95			1.00	0.85
Fit Protected		1.00	-		1.00	1.00		0.99			0.97	1.00
Satd. Flow (prot)		3441			1858	1583		3319			1806	1583
Flt Permitted	,	0.90			0.95	1.00	·.	0.89		ž	0.58	1.00
Satd. Flow (perm)		3115			1766	1583		2966			1080	1583
Volume (vph)	54	449	93	14	241	219	114	325	251	47	28	137
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	Ö.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	60	499	103	16	268	243	127	361	279	52	31	152
RTOR Reduction (vph)	0	19	Ô	0	0	149	0	97	0	0	Ó	90
Lane Group Flow (vph)	0.	643	0	0	284	94	0	670	0.	0	83	62
Turn Type	Perm			Perm	_	Perm	Perm			Perm		Perm
Protected Phases		4			. 8	:		2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)		13.8			13.8	13.8		14.6			14.6	14.6
Effective Green, g (s)		14.8			14.8	14.8		15.6			15.6	15.6
Actuated g/C Ratio	121-	0.39	. Park		0.39	0.39		0.41			0.41	0.41
Clearance Time (s)		5.0			5.0	5.0		5.0			5.0	5.0
Vehicle Extension (s)		3.0		<u> </u>	3.0	3.0	:	3.0		· ·	3.0	3.0
Lane Grp Cap (vph)		1201			681	610		1205			439	643
v/s Ratio Prot							2					
v/s Ratio Perm		c0.21			0.16	0.06		c0.23			80.0	0.04
v/c Ratio		0.54			0.42	0.15		0.56			0.19	0.10
Uniform Delay, d1		9.1			8.6	7.7		8.7			7.3	7.0
Progression Factor	•	1.00		-	1.00	1.00		1.00			1.00	1.00
Incremental Delay, d2		0.5			0.4	0.1		0.6			0.2	0.1
Delay (s)		9.6			9.1	7.8		9.3			7.5	7.1
Level of Service		Α			Α	Α		Α			Α	Α
Approach Delay (s)		9.6			8.5			9.3		-	7.3	
Approach LOS		Α			А			Α			Α	
Intensection Summary												
HCM Average Control D	elay		9.0	F	ICM Le	vel of Se	ervice		А	~		
HCM Volume to Capacit	y ratio		0.55									
Actuated Cycle Length (s)		38.4			ost time			8.0			
Intersection Capacity Ut		ı	68.2%			el of Sei			С			
Analysis Period (min)			15									
c Critical Lane Group								•				

	۶	→	•	•	+	4	4	†	<i>></i>	1	↓	4
Movement.	MEIBL.	EBU	HER.	WBL	WBI	WBR:	NBI	& NB IR	MIBE.	(SEE	(SBI)	RSBR
Lane Configurations	ት	4			- ↔			↑			†	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0			4.0			4.0	
Lane Util. Factor	0.95	0.95			1.00			1.00			1.00	
Frt	1.00	0.99			0.89			1.00			1.00	
Flt Protected	0.95	0.95	•		0.99			1.00		•	1.00	
Satd. Flow (prot)	1681	1679			1642			1863			1863	
Fit Permitted	0.73	0.71			0.93			1.00		-	1.00	
Satd. Flow (perm)	1295	1241			1544			1863			1863	
Volume (vph)	435	0	. 8	6	0	29	0	234	. 0	0	129	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	483	. 0	, 9	7	0	32	. 0	260	0	0	143	0
RTOR Reduction (vph)	0	3	0	0	22	0	0	0	0	0	0	0
Lane Group Flow (vph)	242	247	0 -		17	0	0	260	0	0	143	0
Turn Type	Perm			Perm	0			0			•	
Protected Phases	-	4		,	8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 2	`		6	
Permitted Phases	400	40.0		8	40.0			40.7			40 7	
Actuated Green, G (s)	10.2	10.2			10.2			13.7			13.7	
Effective Green, g (s)	10.2	10.2	· .		10.2			13.7			13.7	
Actuated g/C Ratio	0.32	0.32			0.32			0.43			0.43	
Clearance Time (s)	4.0	4.0			4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0			3.0	•		3.0	
Lane Grp Cap (vph)	414	397			494	,		800			800	
v/s Ratio Prot	:	-0.00			. 0.04			c0.14	•	• •	80.0	
v/s Ratio Perm	0.19	c0.20			0.01			0.00			0.40	
v/c Ratio	0.58	0.62			0.03			0.32			0.18	•
Uniform Delay, d1	9.1	9.2			7.5			6.0			5.6	
Progression Factor	1.00	1.00	•		1.00	7		1.00			1.00	-
Incremental Delay, d2	2.1 11.2	3.0 12.2			0.0 7.5			0.2			0.1	
Delay (s) Level of Service	11.2 B	12.2 B			7.5 A	•	· .	6.3 A			5.7	
	Ь	11.7			7.5			6.3			A	
Approach Delay (s) Approach LOS		11.7 B		-		٠.			1		5.7	
Approach LOS		Б			Α			Α			Α	
ing sedion summay											成和 数	
HCM Average Control D	-		9.1	ŀ	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capacit			0.45									
Actuated Cycle Length (31.9			ost time			8.0			
Intersection Capacity Ut	ilization		37.9%	K	JU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\rightarrow	*	₹	←	•	4	Ť	1	-	↓	4
Movement	KEBL	EBIL)EBR	WBL	:WBII	WER		ANBII(NBR*	SBL	SBT	SBR
Lane Configurations		(î		۲	<u></u>			-			474	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0						4.0	
Lane Util. Factor		1.00		1.00	1.00						0.95	,
Frt		0.96		1.00	1.00						0.98	
Fit Protected		1.00		0.95	1.00						0.97	
Satd. Flow (prot)		1795		1770	1863						3365	
Flt Permitted		1.00		0.95	1.00						0.97	
Satd. Flow (perm)		1795		1770	1863						3365	
Volume (vph)	0	124	46	320	168	. 0	0	0	. 0	464	188	100
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	. 0	138	51	356	187	0	0	0	0	516	209	111
RTOR Reduction (vph)	0	17	0	0	0	0	0	0	0	0	15	0
Lane Group Flow (vph)	0	172	0	356	187	- 0	0	0	0_	0	821	0
Turn Type				Prot				_		Split		
Protected Phases	5	2		. 1	6					4	. 4	
Permitted Phases												
Actuated Green, G (s)		11.2		16.7	31.9	1.5.5				,	19.5	
Effective Green, g (s)		11.2		16.7	31.9						19.5	
Actuated g/C Ratio		0.19		0.28	0.54						0.33	
Clearance Time (s)		4.0		4.0	4.0						4.0	
Vehicle Extension (s)	··	3.0		3.0	3.0	1.0			٠.	٠.	3.0	
Lane Grp Cap (vph)		338		498	1001						1105	
v/s Ratio Prot		c0.10		c0.20	0.10		J. 18.	1.		•	c0.24	
v/s Ratio Perm										,		
v/c Ratio		0.51		0.71	0.19						0.88dl	
Uniform Delay, d1		21.6		19.2	7.1						17.7	
Progression Factor		1.00	-	1.00	1.00				٠		1.00	
Incremental Delay, d2		1.2		4.8	0.1						2.7	
Delay (s)		22.8		24.0	7.2				,		20.5	•
Level of Service		C		С	Α						С	
Approach Delay (s)		22.8			18.2			0.0		,	20.5	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM Average Control D			20.0	H	ICM Le	vel of Se	ervice	A CANADA SA	В	******	and the second second	And March 12 Walt Story
HCM Volume to Capacit	-		0.68				-					
Actuated Cycle Length (59.4	S	ium of k	ost time	(s)	•	12.0			
Intersection Capacity Ut			62.8%			el of Ser			В			
Analysis Period (min)			15									
di Defenta Left Long			طسيحطه	lana a-	- Inft la	m =						

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

c Critical Lane Group

→ → ~ ← ← ← 	1 1
Movement : Sell Sen Tebr Well Will Will Ambr Anbl Men Men Wer Sell	SBIR
Lane Configurations ሻሻ ተ	43-
	900 1900
Total Lost time (s) 4.0 4.0 4.0 4.0	4.0
	1.00
	0.87
	1.00
· ·	619
	0.99
	611
Volume (vph) 519 41 0 0 24 19 314 44 19 3	0 60
	0.90 0.90
Adj. Flow (vph) 577 46 0 0 27 21 349 49 21 3	0 67
RTOR Reduction (vph) 0 0 0 18 0 0 14 0 0	45 0
Lane Group Flow (vph) 577 46 0 0 30 0 349 56 0 0	25 0
Turn Type Prot Perm Perm	
Protected Phases 5 2 6 8	4
Permitted Phases 8 4	
	17.1
	17.1
and the state of t	0.33
Clearance Time (s) 4.0 4.0 4.0 4.0	4.0
Vehicle Extension (s) 3.0 3.0 3.0 3.0	3.0
	539
v/s Ratio Prot c0.17 0.02 c0.02 0.03	
	0.02
	0.05
	11.5
orthographic transfer of the control	1.00
Incremental Delay, d2 1.3 0.0 0.2 9.0 0.1	0.0
	11.5
Level of Service B A B C B	В
	11.5
Approach LOS B B C	В
intersection Summinary	
HCM Average Control Delay 18.5 HCM Level of Service B	
HCM Volume to Capacity ratio 0.59	
Actuated Cycle Length (s) 51.1 Sum of lost time (s) 12.0	
Intersection Capacity Utilization 52.2% ICU Level of Service A	
Analysis Period (min) 15	
c Critical Lane Group	

	•	→	7	•	4	•	•	†	-	1	↓	4
Meweni	* EBD	#EBT#	FEBR		-WBTh	WBR	NBL	NBT	ANBRY	SEL	#SEI	#SBR
Lane Configurations		↑ ↑			44			4			र्स	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	4.0
Lane Util. Factor		0.95			0.95			1.00	-		1.00	1.00
Frt		1.00			1.00			0.90			1.00	0.85
Fit Protected	•	100	:		1.00		-	0.99		_	0.97	1.00
Satd. Flow (prot)		3538			3536			1650			1805	1583
Fit Permitted		1.00			0.94	-	,	0.93	•		0.79	1.00
Satd. Flow (perm)		3538			3336			1560			1478	1583
Volume (vph)	0	590	2	5	301	0		. 0	18	203	117	598
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	. 0	656	2	, 6	334	0	6	0	20	226	130	664
RTOR Reduction (vph)	0	0	0	0	0	0	0	10	0	0	0	109
Lane Group Flow (vph)	0	658	· 0.	0	340	0	0	16	0	0	356	555
Turn Type				Perm			Perm			Perm		Perm
Protected Phases		2	4		. 6			8		_	_. 4	
Permitted Phases				6			8			4		4
Actuated Green, G (s)		12.7		٦.	12.7			19.4			19.4	19.4
Effective Green, g (s)		12.7			12.7			19.4			19.4	19.4
Actuated g/C Ratio		0.32	· · · · · · · · · · · · · · · · · · ·	· .	0.32	2 - 1 N		0.48	•		0.48	0.48
Clearance Time (s)		4.0			4.0			4.0			4.0	4.0
Vehicle Extension (s)		3.0		2.75	3.0	· · · · · · · · · · · · · · · · · · ·		3.0			3.0	3.0
Lane Grp Cap (vph)		1121			1057			755			715	766
v/s Ratio Prot		c0.19		:		٠.	et in a			* 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
v/s Ratio Perm					0.10			0.01			0.24	c0.35
v/c Ratio		0.59	· .		0.32		٠.	0.02		•	0.50	0.72
Uniform Delay, d1		11.5			10.4			5.4			7.0	8.2
Progression Factor		1.00			1.00			1.00			1.00	1.00
Incremental Delay, d2		0.8			0.2			0.0			0.5	3.4
Delay (s)	÷. ,	12.3	,		10.6			5.4			7.6	11.6
Level of Service		В			В			Α			Α	В
Approach Delay (s)		12.3		•	10.6		-	5.4			10.2	
Approach LOS		В			. В			Α			В	
intersection Summary »												
HCM Average Control D			10.9	ŀ	HCM Le	vel of Se	ervice		В			
HCM Volume to Capaci			0.67						i.			
Actuated Cycle Length			40.1			ost time			8.0			
Intersection Capacity U	tilization	ŀ	58.8%	ļ	CU Lev	el of Ser	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

APPENDIX E: PROJECT COST ESTIMATES

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTIONS 1, 2 LEONA QUARRY

13-Jul-06

OAKLAND, CALIFORNIA

				Unit	
Item	Description	Quantity	Unit	Price	Amount
-					
	I-580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EAST	TBOUND OFF	RAMP/ ED	WARDS AVE	
	<u>IMPROVEMENTS</u>				
	Improvements				
1	Burckhalter Park driveway construction	1	LS	\$55,638	\$55,638
2	Interchange modification construction	1	LS	\$747,928	\$747,928
	TOTAL				\$803,566
	•				
	DESIGN ENGINEERING				\$110,900
	FEES PAID TO CITY				\$46,841
					7 1 - · ·
	TOTAL (rounded to nearest \$100)				\$961.300

Note:

- 1. Actual construction cost and design engineering cost provided by David Chapman, DeSilva Group.
- 2. Actual fees paid for inspection, permits, plan review, etc. provided by Marcel Uzegbu, City of Oakland.

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 4 LEONA QUARRY OAKLAND, CALIFORNIA

13-Jul-06

ltem	Description		Quantity	Unit	Unit Price	Amount
	EDWARDS AVE./GREENLY DR.					
	IMPROVEMENTS					
	Improvements		4	1.0	#77.00 5	#77.00 5
]	Construction		1	LS	\$77,605	\$77,605
		TOTAL				\$77,605
•	DI	ESIGN ENGINEERING				\$ 1 4,100
		FEES PAID TO CITY				\$16,127
	TOTAL (rour	nded to nearest \$100)			,	\$107,800

Note:

^{1.} Actual construction cost and design engineering cost provided by David Chapman, DeSilva Group.

^{2.} Actual fees for inspection, permits, plan review, etc. provided by Marcel Uzegbu, City of Oakland.

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 6

16-Feb-06

LEONA QUARRY

				Unit	
Item	Description	Quantity	Unit	Price	Amount
	73rd AVE./MacARTHUR BLVD./FOOTHILL BLVD.				
	IMPROVEMENTS				
	Street Work				
1	Saw Cut	250	LF	\$5	\$1,250
2	AC/AB Pavement (6" AC/30" AB)	2,200	SF	\$35	\$77,000
3	Median Curb	220	LF	\$25	\$5,500
4	Miscellaneous Improvements/Utility Relocation	1	LS	\$11,300	\$11,300
5	Landscaping	1	LS	\$25,000	\$25,000
6	Water Meter (relocate)	1	EA	\$11,300	\$11,300
7	HC Ramps	3	EA	\$2,900	\$8,700
8	Signing/Striping	1	LS	\$25,000	\$25,000
9	Remove curb and gutter	220	LF	\$20	\$4,400
10	Remove tree	6	EA	\$900	\$5,400
	Subtotal				\$174,850
					ψ111,000
	Signalization				
11	Modify Traffic Signal	1	LS	\$135,600	\$135,600
12	Interconnect	600	LF	\$25	\$15,000
	Subtotal				\$150,600
	TOTAL				\$325,450

Project:	73rd/MacArthur	Blvd/Foothill Blvd #6	Estimate by:	
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
<u>.</u>	E	ESTIMATED CONSTRUCTION COST		\$325,450
	ST TSC	Contingency	25.0%	\$ 81,360
	CONSTRUCTI ON COSTS	Inspection	9.0%	\$ 29,29
	NO NO	Construction Services (Survey and Testing)	2.0%	\$ 6,50
	3 ⁰	แต่งหรูป, (croxหรูการีเป็นกับใช้กับเรื่องรักเรื่	36.0%	\$ 442,612
		<u> </u>		
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 13,27
		Environmental studies	3.0%	\$ 13,27
	DSG		15.0%	\$66,392
		Constructibility Plan Review Cost		\$ 22,13
	Į	TOTAL DESIGN COST	26.0%	115,07
	2	ADMINISTRATION		
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc)	8.0%	\$ 35,409
	NIS CO	Printing/Duplication/Advertising/Postage	 	\$ 2,21:
	<u> </u>	Other Agencies Permit (PGE power)		\$ 2,21:
	ΑD	Contract Compliance	3.0%	\$ 13,27
		ŢĮĠŢſŹŊĹŹŊĔĸŊĿŖŢŖŢĸŊĸŊĠŢſŢŊ	12,0%	Section 1
	TOTALS	SUB TOTAL PROJECT COST		610,80
	Į.	Project Contingency	10.0%	\$ 11,500
	F	TOTAL PROJECT COST:		\$ 622,312

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 7

06-Jan-06

LEONA QUARRYOAKLAND, CALIFORNIA

				Unit	
Item	Description	Quantity	Unit	Price	<u>Amount</u>
	MOUNTAIN BLVD./KELLER AVE.				
	IMPROVEMENTS				
	Improvements				
1	Miscellaneous Improvements/Utility Relocation	1	LS	\$11,300	\$11,300
2	Signing/Striping	1.	LS	\$21,000	\$21,000
3	HC Ramps	4	ĒΑ	\$2,900	\$11,600
	·			. ,	•
	Si	ubtotal			\$43,900
	Signalization				
4	Traffic Signal	2	LS	\$180,800	\$361,600
5	Interconnect	1,000	LF	\$25	\$25,000
				,	
	S	ubtotal			\$386,600
					•
	ĭ	OTAL			\$430,500
					. ,

Project:	Mountain Blvd/	Keller Avenue #7	Estimate by:	M. Uzeg	bu
			Date Estimated	5/4/200	
Project No.:	P27710		Checked by:		
	E	ESTIMATED CONSTRUCTION COST		\$22.72	430
	CONSTRUCTI	Contingency	25.0%	\$	107
	E C	Inspection	9.0%	\$	38
	NO NO	Construction Services (Survey and Testing)	2.0%	\$	8
	2 0	TROMAN CONSTITUTION CONSTITU	36.0%	[\$]	(5)(6)
		DESIGN COST			
		Engineering studies(traffic studies)	3.0%	\$	17,
		Environmental studies	3.0%	\$	17
	DSC	Design/Engineering	15.0%	\$	87
		Constructibility Plan Review Cost	5.0%	\$	29
		TOTAL DESIGN COST	26.0%	\$明城强烈的高兴	× 152
	3				
	2	ADMINISTRATION			
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc.)	8.0%	\$	46
	SHOS	Printing/Duplication/Advertising/Postage		\$	2
	M E	Other Agencies Permit9eg, PGE power)	0.5%	\$	2
	A	Contract Compliance		\$	17
		THOMPAN AND WIND STREAM OF CONTRIB	12.0%		7/(0)
		SUB TOTAL PROJECT COST	化分离物质学	\$ 67000000000000000000000000000000000000	807
		Project Contingency TOTAL PROJECT COST:	10.0%	\$	15 823,

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 8

16-Feb-06

LEONA QUARRY

OAKLAND, CALIFORNIA

Item	Description	Quantity	Unit	Unit Price	Amount
	I-580 WESTBOUND OFF-RAMP/MOUNTAIN BLVD. IMPROVEMENTS				
1	Improvements Construction	1	LS	\$212,385	\$212,385
	TOTAL				\$212,385

Note:

Updated: 9/27/2006

^{1.} Actual construction cost (based on bids received) provided by David Chapman, DeSilva Group.

		PRELIMINARY PROJECT ESTIMATE		
Project:	I-580 Westbour	nd off-ramp/Mountain Blvd/Shone # 8	Estimate by:	M. Uzegbu
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
	Εø	ESTIMATED CONSTRUCTION COST	The second second	\$ 212,38
	CONSTRUCTI	Contingency	25.0%	\$ 53,09
	i i i	Inspection	9.0%	\$ 19,11
	NO C	Construction Services (Survey and Testing)	3.0%	\$ 6,37
	ö	HONLANGURALERIAN HONLANGON	37.0%	S 2009
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 8,72
	1	Environmental studies	3.0%	\$ 8,72
	DSG		15.0%	\$ 43,64
		Constructibility Plan Review Cost	5.0%	\$ 14,54
		TOTAL DESIGN COST	26.0%	\$ 75,65
	≥	ADMINISTRATION		
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc.)	8.0%	\$. 23,27
	SIN	Printing/Duplication/Advertising/Postage	0.5%	\$ 1,45
	M m	Other Agencies Permit eg. PGE Power)	0.5%	\$ 1,45
	AD	Contract Compliance		\$ 8,72
		iifOttZVL ZVERHNISHIRZAHAYAHAYA (CXO)SHRS	12.0%	8 04.9
		SUB TOTAL PROJECT COST	51.17.14概念等的。	401,53
		Project Contingency	10.0%	\$ 7,56
		TOTAL PROJECT COST:		\$ 409,10

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 9

16-Feb-06

LEONA QUARRY

					Unit	
Item	Description		Quantity	Unit	Price	Amount
	1-580 EASTBOUND OFF-RAMP/KELLER AVE.					
	IMPROVEMENTS					
	Improvements		•			
1	Miscellaneous Improvements/Utility:Relocation		1	LS	\$11,300	\$11,300
2	HC Ramps		4	EA	\$2,900	\$11,600
3	Signing/Striping		1	LS	\$13,000	\$13,000
		Subtotal				\$35,900
	Signalization					
4	Traffic Signal		1	LS	\$180,800	\$180,800
		Subtotal				\$180,800
		TOTAL				\$216,700

		PRELIMINARY PROJECT ESTIMATE		
Project:	Eastbound Off-F	Ramp/Keller Avenue # 9	Estimate by:	M. Uzegbu
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
<u></u>	Eø	ESTIMATED CONSTRUCTION COST	等一度有數數學是	\$ 216,70
	CONSTRUCTI ON COSTS	Contingency	25.0%	\$ 54,1
	F 53	Inspection	9.0%	\$ 19,5
	NC N	Construction Services (Survey and Testing)	2.0%	\$ 4,3
	80	THOMENU, COMESTITATION OF CONSTITE	36.0%	\$ 2000
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 8,8
		Environmental studies	3.0%	\$ 8,8
	DSG	Design/Engineering	15.0%	\$ 44,2
		Constructibility Plan Review Cost	5.0%	\$ 14,7
		TOTAL DESIGN COST	26.0%	\$ 6.66
	2	ADMINISTRATION		<u></u>
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc.)	7.0%	\$ 20,6
	AIS CO	Printing/Duplication/Advertising/Postage		\$ 1,4
	M	Other Agencies Permit(PGE power etc)	0.5%	\$ 1,4
	AΒ	Contract Compliance		\$ 8,8
		TIOTIAN AYDANIANSTIAAATIINAA COSTIS	411.00%	9 644
	TOTALS	SUB TOTAL PROJECT COST	2012 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10	\$ 403,7
	7TC	Project Contingency	 	\$ 7,6
	Ĕ	TOTAL PROJECT COST.	· 医原体性性原体	\$ 411,4

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 16

17-Jan-06

LEONA QUARRY

				Unit	
Item	Description	Quantity	Unit	Price	Amount
			-:		
	I-580 WESTBOUND OFF-RAMP/KUHNLE AVE./MOUN	TAIN BLVD.			
	<u>IMPROVEMENTS</u>				
	Street Work				
1	Saw Cut	300	LF	\$5	\$1,500
2	AC/AB (6" AC/30" AB)	1,200	SF	\$35	\$42,000
3	Curb and Gutter	300	LF	\$21	\$6,300
4	Miscellaneous Improvements/Utility Relocation	1	LS	\$116,700	\$116,700
5	HC Ramps	4	EA	\$2,900	\$11,600
8	Signing/Striping	1	LS	\$22,000	\$22,000
	Sub	total			\$200,100
	Signalization				
7	Traffic Signal	1	LS	\$180,800	\$180,800
8	Interconnect	600	LF	\$25	\$15,000
	Sub	total			\$195,800
	то	TAL			\$395,900

Project:	1.580 We	estbound	off.ramp/Kunie Avenue/Mountain Blvd #16	Estimate by:	M. Uzegbu
				Date Estimated	5/4/2006
Project No.:	P27710			Checked by:	
		Εs	ESTIMATED CONSTRUCTION COST		\$ 395,90
		CONSTRUCTI ON COSTS	Contingency	25.0%	\$ 98,97
		ST	Inspection	9.0%	\$ 35,60
		NO	Construction Services (Survey and Testing)	2.0%	\$ 7,9
		3	મહામા/સાદ (છાછાસ) કાતા સમાદ સો માં છો. છે. છે. છે. છે.	36.0%	D BORN
	ſ		DESIGN COST		
			Engineering studies(traffic studies)	3.0%	\$ 16,1
			Environmental studies	3.0%	\$ 16,1
	1	DSG	Design/Engineering	15.0%	\$ 80,7
			Constructibility Plan Review Cost	5.0%	\$ 26,9
			TOTAL DESIGN COST	26.0%	\$ 139,9
	:				
		<u> </u>	ADMINISTRATION		
		ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc)	8.0%	\$ 43,0
		SIS CO	Printing/Duplication/Advertising/Postage	 	\$ 2,6
		E III	Other Agencies Permit		\$ 2,6
		ΑD	Contract Compliance		\$ 16,1
		·	TIOITZVI AYDIVIINISHIRVAVIIIME (CO)SHES	\$12,00%	e
			SUB TOTAL PROJECT COST		\$ 743,0
			Project Contingency		\$ 13,9
			TOTAL PROJECT COST:	等型的复数形 。	\$ 757,02

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 18

06-Jan-06

LEONA QUARRY

				Unit	
Item	Description	Quantity	Unit	Price	Amount
	I-580 EASTBOUND OFF-RAMP/SEMINARY AVE./OVER	RDALE AVE.			
	Street Work				
1	Miscellaneous Improvements/Utility Relocation	1	LS	\$11,300	\$11,300
2	Signing/Striping	1	LS	\$15,000	\$15,000
	Subto	otal			\$26,300
	Signalization				
3	Traffic Signal	1	LS	\$180,800	\$180,800
4	Interconnect	1	LS	\$11,300	\$11,300
	Subtr	otal			\$192,100
	тот	AL			\$218,400

Project:	i.580 eastbour	d off.ramp/Seminary Avenue/Overdale Ave #18	Estimate by:	M. Uzegbu
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
·····	E a	ESTIMATED CONSTRUCTION COST	不可以實際影響。	\$ 218,40
	CONSTRUCTI	Contingency	25.0%	\$ 54,60
	<u> </u>	Inspection	9.0%	\$ 19,65
	Ž ž	Construction Services (Survey and Testing)		\$4,36
	ŭ	માંઓમું માં માં કામાં કામાં આવેલા છે. છે. આ માના માના માના માના માના માના માના મા	36.0%	497400
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 8,91
	ł	Environmental studies	3.0%	\$ 8,91
	DSC	Design/Engineering	15.0%	\$ 44,55
		Constructibility Plan Review Cost	5.0%	\$ 14,85
		TOTAL DESIGN COST	26.0%	\$ 77,22
	2	ADMINISTRATION		
	ADMINISTRATIO N COSTS	Project Management (administration, bidding etc)	8.0%	\$ 23,76
	S S	Printing/Duplication/Advertising/Postage	0.5%	\$ 1,48
	N MIN	Other Agencies Permit (PGE power)	0.5%	\$ 1,48
	AD	Contract Compliance	3.0%	\$ 8,91
		SITOTIVALI /AVITALITE INTILITE INTILITATION INTILITATIONI		616164
			Name of the Owner	
		SUB TOTAL PROJECT COST	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	\$ 409,89
		Project Contingency	10.0%	\$ 7,72
		TOTAL PROJECT COST:	15-1-X-2000 (A) 18-16	\$ 417,61

1				
i '				
•				
1				
1				
1				
]				
ł				
!				
I				
ı				
•				
		•		
1				
	•			
:				
:				
:				