DEFICE TO SERVE	
OAKLAND CITY COUNCIL F. Faiz	
RESOLUTION NO. 80389 C.M.S.	
Introduced by Councilmember	

A RESOLUTION ESTABLISHING A TRAFFIC IMPACT FEE (TIF) PURSUANT TO ADOPTION AND IMPLEMENTATION OF THE TRAFFIC IMPACT PROGRAM (TIP) FOR THE SOUTHEASTERN PORTION OF THE CITY OF OAKLAND, INCLUDING THE ADOPTION AND IMPOSITION OF TRAFFIC IMPACT FEES (TIF) AND DESIGNATED PROJECTS FOR FY 2007-09

WHEREAS, the purpose of this implementing resolution is to establish the amount of Traffic Impact Fee (TIF) to be imposed upon development projects within the city of Oakland, for the purpose of mitigating the impacts caused by development upon the City's traffic and transportation infrastructure and facilities; and

WHEREAS, the City is authorized to adopt and impose traffic impact fees upon development projects pursuant to article XI, section 7 of the California Constitutions; California Government Code sections 66000, *et seq* (hereinafter "Mitigation Fee Act"); and

WHEREAS, Oakland Municipal Code (OMC) Title X, Chapter 70, titled Traffic Impact Program has been adopted by the City to establish the procedures by which the City charges the traffic impact fee; and

WHEREAS, condition No. 26 and Settlement Agreement of the Leona Quarry development project, as outlined in Resolution No. 78358 C.M.S. (Resolution approving the application of the DeSilva Group to close the Leona Quarry, and reclaim it and redevelop the site for 477 residential units at 7100 Mountain Boulevard in compliance with Alameda Superior Court order [Action No. RG-03077607)] requires the establishment of a Traffic Impact Fee and Traffic Impact Fee; and

WHEREAS, pursuant to the California Environmental Quality Act (CEQA) on February 17, 2004, by Resolution 78359, the City certified an Environmental Impact Report (EIR) which adequately analyzed the impacts of the improvements contemplated by this Resolution, including the creation of fee programs to require new development in the Southeast area of Oakland to fund their proportional fair share of the cost of acquiring and improving public facilities, including traffic and transportation improvements; and

WHEREAS, Fehr & Peers Associates has prepared a transportation impact fee study dated September 2006 (Nexus Report), attached as Exhibit A, and hereby incorporated by reference, that provides the technical basis for implementation of a TIF and TIP in the Southeast Oakland area documenting the analytical approach for determining the nexus between the cost of improvements and the local traffic impact created by anticipated development in the Southeast Oakland area along with a traffic and fair-share cost analysis conducted to equitably distribute the costs of the necessary improvements to development that causes the impacts, per the provisions of the Mitigation Fee Act; and

WHEREAS, in accordance with Government Code section 66016, at least 14 days prior to the public hearing at which the City Council first considered the adoption of this Resolution, notice of time and place of the hearing was mailed to eligible interested parties; and

WHEREAS, in accordance with Government Code section 66016, the Nexus Report was available for public review and comment for 10 days prior to the public hearing at which the City Council first considered the adoption of the this Resolution; and

WHEREAS, ten (10) days advance notice of the public hearing at which the City Council first considered the adoption of this Resolution was given by publication in accordance with Section 6062(a) of the Government Code; and

WHEREAS; the record establishes and the City Council finds as follows:

- 1. That the purpose of the TIF set forth in this Resolution is to mitigate the traffic impacts of new development within the study area, by developing an overall transportation system that will accommodate the expected future traffic demand.
- 2. That the revenues from the Southeast Oakland TIF and TIP will be used to used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. These projects include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area.
- 3. There is a reasonable relationship between the fee's use and the type of development generate traffic with different characteristics and the nexus analysis presented in the technical study accounts for the differential impact on the local street system caused by different development types.
- 4. That there is a reasonable relationship between the need for the facilities and the type of development on which the fee is imposed by determining that implementation of the improvements would return the traffic operations at the affected intersections to within the City's standards and that there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for improvements at these locations is attributable to traffic generated by new development.
- 5. That there is a reasonable relationship between the amount of the fee and the cost of the public facility to ensure that all reasonably anticipated cost elements have been accounted for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs are then distributed among the different development types in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category. now, therefore be it

RESOLVED: that the city hereby finds that the facts set forth in recitals to this implementing resolution are true and correct, and establish the factual basis for the adoption of the Traffic Impact Fee (TIF); and be it

FURTHER RESOLVED: that the City Council hereby finds that the facts and analyses described in the report titled "Southeast Oakland Traffic Improvement Fee Study" (Exhibit A), including all technical reports incorporated by reference satisfy the requirements of the Mitigation Fee Act; and be it

FURTHER RESOLVED: that the City Council hereby adopts the Traffic Impact Fee for each identified land use category identified in Exhibit A as follows:

TABLE 1 PRELIMINARY SOUTHEAST OAKLAND TIF AND TIP FEE CALCULATIONS				
Land Use Category	Fee/Unit			
Single-Family Residential	\$3,160/Unit			
Other Residential	\$2,4 40/Unit			
Retail	\$5.89/Square Foot			
Service	\$3.12/Square Foot			
Manufacturing	\$1.44/Square Foot			
Source: Fehr & Peers, 2006.				

; and be it

FURTHER RESOLVED: that the City Council hereby adopts the following Traffic Impact Fee project and cost estimates as follows:

TABLE 2					
COST ESTIMATES FOR SOUTHEAST OAKLAND TIF/TIP IMPROVEMENTS					
Location	Cost Estimate				
1 and 2. I-580 WB On-Ramp/Edwards Avenue and	\$961,300				
I-580 EB Off-Ramp/Edwards Avenue					
4. Greenly Drive/Edwards Avenue	\$107,800				
6. MacArthur Boulevard/73 rd Avenue	\$622,300				
7 Mountain Boulevard/Keller Avenue	\$823,200				
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	\$409,100				
9. I-580 EB Off-Ramp/Keller Avenue	\$411,400				
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	\$757,000				
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	\$417,600				
A. Study of Edwards Avenue and Seminary Avenue operational improvements	\$350,000				
Total Cost of Improvements	\$4,859,700				

; and be it

FURTHER RESOLVED: that as funding is collected and/or allocated for each of the projects listed for the TIF, the Development Director will submit projects to the City Council for their approval through the Capital Improvement Program (CIP) budget process, under the heading of Traffic Impact Program projects; and be it

FURTHER RESOLVED: that the Development Director my move funds between individual TIF projects already approved by the City Council without the need for additional Council authorization to ensure the most effective and efficient implementation timeline for each of the traffic impact program projects; and be it

FURTHER RESOLVED: that any projects that has acquired or will acquire a vested right to develop under California law prior to the enactment of this resolution shall not be required to pay the TIF; and be it

FURTHER RESOLVED: that the fees established by this resolution shall become effective 60 days following its enactment contingent upon the adoption of the enabling ordinance Title 10 Vehicles And Traffic, Chapter 70 Southeast Oakland Area Traffic Impact Fee

IN COUNCIL, OAKLAND, CALIFORNIA, FEB 6 2007, 20

PASSED BY THE FOLLOWING VOTE:

AYES - BROOKS, THE CHANG, KERNIGHAN, NADEL, WEAR, and PRESIDENT DE LA FUENTE -5

NOES - A ABSENT - Brunner, Quan - 2 ABSTENTION - O Excused - Reid - 1

(L) 5~ ATTEST LaTonda Simmons

LaTonda Simmons City Clerk and Clerk of the Council of the City of Oakland, California

FEHR & PEERS TRANSPORTATION CONSULTANTS

Final Draft Report Southeast Oakland Traffic Improvement Fee Study

September 2006

Prepared for: City of Oakland

TABLE OF CONTENTS

1.	Introduction	.4
	Background	.4 .4
	Use of the Traffic Mitigation Fee	.4
	Study Area	.5
	Organization of the Report	. 5 . 5
2.	The Proposed Fee Program	.7
3.	Analysis Methods and Results	. 9
4.	Findings	17

APPENDICES

Appendix A: Summary of Fee Programs in Other Jurisdictions

Appendix B: TIF and TIP Area and Land Use Projections

Appendix C: Description of Edwards/Seminary Corridor Study

Appendix D: Detailed Traffic Level of Service Analysis Worksheets

Appendix E: Project Cost Estimates

LIST OF FIGURES

.

Figure 1	Study Area
Figure 2	Southeast Oakland Traffic Improvement Fee Projects

1

ļ

į

1

÷

LIST OF TABLES

Table 1	Existing Conditions Peak Hour Intersection Levels of Service	10
Table 2	Southeast Oakland TIF and TIP Project List	11
Table 3	Future Peak Hour Intersection Levels of Service Without and With Mitigation	12
Table 4	Cost Estimates for Southeast Oakland TIF/TIP Improvements	13
Table 5	Southeast Oakland TIF and TIP Area Housing and Employment Projections	15
Table 6	DUE Conversion Factors	15
Table 7	Growth Converted to DUEs	16
Table 8	Preliminary Southeast Oakland TIF and TIP Fee Calculations	16

- 1

1. INTRODUCTION

BACKGROUND

Pursuant to the *Mitigation Fee Act*, California Government Code Section 66000, et seq. (also known as AB 1600), a local agency is authorized to charge a fee to development applicants in connection with approval of a development project for the purpose of defraying all or a portion of the costs of public facilities related to the development project. The capital improvements funded through a fee program are typically those required to mitigate the traffic impacts of new development within the study area. Specifically, the purpose of the fee is to maintain adequate level of service standards at intersections throughout the study area. The fee is not imposed to improve or correct deficiencies in baseline service levels, or to mitigate the impacts of regional (through) traffic.

Transportation impact fees are commonly collected in many jurisdictions in the Bay Area and throughout California to aid in financing transportation infrastructure required by new development. Currently, the City of Oakland does not collect transportation-related impact fees for new developments. For comparison and reference purposes, Appendix A includes a summary of impact fee programs in a selection of northern California cities.

PURPOSE

The purpose of this study is to provide the technical basis for implementation of a Traffic Improvement Fee (TIF) and Traffic Improvement Program (TIP) in the Southeast Oakland area. The TIF and TIP will constitute a funding mechanism for traffic improvements required to mitigate cumulative traffic impacts in the Southeast Oakland area, as documented in the Leona Quarry Environmental Impact Report. Development of a TIF and TIP is required as part of the Conditions of Approval (see Condition #26) for the Leona Quarry project, and is also addressed in the Leona Quarry Settlement Agreement executed in December 2003.

This report documents the analytical approach for determining the nexus between the cost of improvements and the local traffic impact created by anticipated development in the Southeast Oakland area. A traffic and fair-share cost analysis is conducted to equitably distribute the costs of the necessary improvements to development that causes the impacts, per the provisions of AB 1600.

USE OF THE TRAFFIC MITIGATION FEE

AB 1600 requires that mitigation fee programs comply with certain basic requirements, including:

- Identifying the purpose of the fee
- Identifying how the fee will be used and the facilities to be funded through the fee
- Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed

- Determining a reasonable relationship between the need for the public facility and the type of development on which the fee is imposed
- Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development

These items are addressed throughout this study and are summarized in the final chapter.

STUDY AREA

The study area is located in Southeast Oakland and is shown on Figure 1. The area generally extends along both sides of the I-580 freeway corridor between the Seminary Avenue and the 98th Avenue interchanges. A more detailed map of the geographic area included in the Southeast Oakland TIF and TIP is provided in Appendix B. The goal of the study is to calculate a fee that would be collected on new development in the Southeast Oakland TIF and TIP area.

STUDY PROCESS

This study was developed under the direction of City of Oakland staff. After review and public hearing, the City Council will consider approval of the study and adoption of an ordinance specifying a fee schedule.

ORGANIZATION OF THE REPORT

This report contains a total of four chapters including this introductory chapter.

Chapter 2 – Fee Program Background provides an overview of fee programs and the factors considered in this analysis. A description of the projects proposed to be included in this TIF program is also included.

Chapter 3 – Analysis Methods and Results describes the technical analysis conducted to establish the nexus between local development and the costs of improvements, and presents the results of the fee calculations.

Chapter 4 – Findings reviews the study procedures and results in the context of the requirements of AB 1600.

2. THE PROPOSED FEE PROGRAM

This chapter describes the impetus behind this proposed fee program and identifies the project locations covered by the Southeast Oakland TIP and TIP.

The Southeast Oakland TIF and TIP developed here is intended to assess the cost-sharing responsibilities for capital roadway improvements identified in the Leona Quarry EIR and in the Conditions of Approval for the Leona Quarry project. As specified in these documents and in the Leona Quarry Settlement Agreement, the following improvements will be included in the Southeast Oakland TIF and TIP¹:

- 1. I-580 Westbound On-Ramp/Edwards Avenue/Mountain Boulevard: Install traffic signal and associated geometric changes.
- 2. I-580 Eastbound Off-Ramp/Edwards Avenue: Install traffic signal and associated geometric changes (including improvements to the Burckhalter Park driveway).
- 4. Greenly Drive/Edwards Avenue: Restripe Edwards Avenue to provide a separate westbound leftturn lane.
- 6. MacArthur Boulevard/Foothill Boulevard/73rd Avenue: Modify west leg to add a second eastbound left-turn lane.
- 7. Mountain Boulevard/Keller Avenue: Install traffic signal.
- 8. I-580 Westbound Off-Ramp/Mountain Boulevard/Shone Avenue: Install traffic signal.
- 9. I-580 Eastbound Off-Ramp/Keller Avenue: Install traffic signal.
- 16. I-580 Westbound Off-Ramp/Seminary Avenue/Kuhnle Avenue: Install traffic signal and add second eastbound left-turn lane.
- 18. I-580 Eastbound Off-ramp/Seminary Avenue/Overdale Avenue: Install traffic signal.

In addition, Conditions of Approval #26g and #26h call for the TIF and TIP to include a study of other potential long-term operational improvements along the Edwards Avenue, 82nd Avenue, and Seminary Avenue routes, including any further intersection improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR. A more detailed description of this study is included in Appendix C.

The locations of these TIF and TIP projects are shown on Figure 2. The nexus analysis presented in the subsequent chapters calculates fees that can be collected to support improvements at these locations.

FP LETTR & PILRS

¹ Intersection numbering is consistent with that used in the Leona Quarry EIR.

3. ANALYSIS METHODS AND RESULTS

The analysis methods used to determine the nexus between traffic impacts from new developments and the associated improvement measures are outlined in this chapter, along with the results of the fee calculations.

Step 1 – Review and Update Prior Traffic Analysis

The capital improvements to be included in this fee study were initially identified as mitigation measures in the Leona Quarry EIR. The analysis presented in the EIR was based on traffic forecasts derived from 2020 land use projections used in the Alameda County Congestion Management Agency (ACCMA) model. More recently, year 2025 ACCMA model land use projections have become available. For this study, an updated analysis using the most recent land use projections currently available was conducted to verify the applicability of the mitigation measures. The process of reviewing and updating the traffic analysis is described below. Appendix B provides further detail about the land use projections.

Existing Traffic Conditions

Existing peak hour operating conditions at the relevant study intersections from the Leona Quarry EIR are presented in Table 1. As shown in Table 1, the EIR analysis found that all intersections currently operate acceptably at LOS D or better during the morning and evening peak hours.

Future Traffic Conditions

As described above and in Appendix B, an updated future conditions analysis was conducted to ensure that the improvements called for in the Leona Quarry EIR would remain adequate to address future traffic demands. In this analysis, peak hour trips from new development in the study area were generated using rates from the Institute of Transportation Engineers (ITE) *Trip Generation*, 7th Edition and were added to the existing traffic volumes (a figure showing the resulting traffic volumes is included in Appendix D). The purpose of this analysis was to confirm that traffic from the new developments in the local study area would cause the need for improvements at the study intersections; to achieve this, no growth in traffic from outside the study area was assumed. In addition, we wanted to confirm that the mitigation measures proposed in the Leona Quarry EIR would be adequate to mitigate the projected deficiencies. A summary of these mitigation measures, which are the improvements included in this TIF and TIP, is provided in Table 2.

The resulting future peak hour traffic volumes were analyzed at each of the study locations, both with and without the specified mitigation measures, and the results are shown in Table 3. The results indicate that, with the addition of traffic from the new local developments ("Future Conditions"), all of the intersections would operate poorly, with levels of service at LOS E or F or with excessive queuing that would obstruct traffic flow. When the mitigation measures were applied ("Future With Mitigation"), all intersections would operate at LOS D or better, which is consistent with the City's standards. Thus, the capital improvements

identified for inclusion in the Southeast Oakland TIP/TIF will mitigate the traffic effects of new development in the area. Appendix D contains the detailed LOS analysis worksheets.

TABLE 1 EXISTING CONDITIONS PEAK HOUR INTERSECTION LEVELS OF SERVICE						
	AM Pea	ak Hour	PM Peak Hour			
Intersection	Delay	LOS ¹	Delay	LOS ¹		
Side-Street Stop-Controlled						
1. I-580 WB On-Ramp/Mountain Boulevard/Edwards Avenue	9.1	A	5.7	B		
2. I-580 EB Off-Ramp/Edwards Avenue	3.9	А	3.6	A		
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	4.4	А	6.3	В		
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	8.6	В	8.2	В		
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	4.2	А	9.1	В		
All-Way Stop-Controlled				•		
7. Mountain Boulevard/Keller Avenue	13.6	с	12.8	С		
9. I-580 EB Off-Ramp/Keller Avenue	7.9	В	14.7	С		
Signalized		•				
4. Greenly Drive/Edwards Avenue	9.1	В	13.5	В		
6. MacArthur Boulevard/73 rd Avenue 28.6 D 27.2 D						
Notor: LOS = Lovel of Service: W/P = weethound: EP = coethound	•		<u></u>	I		

Notes: LOS = Level of Service; WB = westbound; EB = eastbound

1. Based on Highway Capacity Manual (HCM) 1994 method for unsignalized and signalized intersection service levels.

Source: Revised Draft Traffic Study for the Proposed Residential Development at Leona Quarry Site in the City of Oakland, TJKM Transportation Consultants, June 7, 2002.

ī

ļ

ļ

÷

i

ì

Γ

ID	Project	Description
1 (MM K.2a)	I-580 WB On-Ramp/ Mountain Boulevard/ Edwards Avenue	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Edwards Avenue
2 (MM K.2b)	l-580 EB Off-Ramp/ Edwards Avenue	 Signalize intersection and coordinate with I-580 WB Off- Ramp/Edwards Avenue
4 (MM K.2c)	Greenly Drive/ Edwards Avenue	Add westbound left-turn lane
6 (MM K.2d)	MacArthur Boulevard/ 73 rd Avenue	Add second eastbound left-turn lane
· · · · · · · · · · · · · · · · · · ·		 Signalize intersection and coordinate with I-580 EB Off- Ramp/Keller Avenue
7 (MM K.2e)	Mountain Boulevard/ Keller Avenue	 Re-stripe eastbound approach from one shared left/through/right lane to one shared left-turn/through lane and one shared through/right-turn lane
		 Re-stripe west leg of Keller Avenue from two lanes to one lane
8 (MM K.2f)	Mountain Boulevard/ I-580 WB Off-Ramp/ Shone Avenue	 Signalize intersection Re-stripe existing right-turn only lane on I-580 WB off-ramp to shared left-turn/right-turn lane
9 (MM K.2g)	I-580 EB Off-Ramp/ Keller Avenue	 Signalize intersection and coordinate with Mountain Boulevard/Keller Avenue
16	I-580 WB Off-Ramp/	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Overdale Avenue/Seminary Avenue and I-580 EB On- Ramp/Seminary Avenue/Kuhnle Avenue
(MM K.2h)	Seminary Avenue/ Kuhnle Avenue	 Re-stripe eastbound Kuhnle Avenue to include two exclusive left-turn lanes and one through lane
		 Widen the north leg of Mountain Boulevard to one southbound lane and two northbound lanes
18 (MM K.2i)	I-580 EB Off-Ramp/ Overdale Avenue/ Seminary Avenue	 Signalize intersection and coordinate with I-580 WB Off- Ramp/Seminary Avenue/Kuhnle Avenue and I-580 EB On- Ramp/Seminary Avenue/Kuhnle Avenue
A (COA 26g/h)	Study of Edwards Avenue and Seminary Avenue operational improvements	 A study of other long-term operational traffic improvements along the Edwards Avenue, 82nd Avenue segment and Seminary Avenue routes, particularly the Foothill-82nd Avenu segment and the MacArthur-Seminary segment, including an further intersection improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry Ell

TABLE 3 FUTURE PEAK HOUR INTERSECTION LEVELS OF SERVICE WITHOUT AND WITH MITIGATION									
AM Peak Hour PM Peak Hour									
		Futu	re	Futu With Miti	re gation	Future		Future With Mitigation	
Intersection	Traffic Control ¹	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. I-580 WB On-Ramp/ Mountain Boulevard/ Edwards Avenue	Side Street Stop ² (Signal ³)	>50 (NB)	F	15	В	>50 (NB)	F	11	в
2. I-580 EB Off-Ramp/ Edwards Avenue	Side Street Stop ² (Signal ³)	41 (SB)	E	20	В	47 (SB)	Е	19	В
4. Greenly Drive/ Edwards Avenue	Signal ³	10	В	11	В	9	A5	13	В
6. MacArthur Boulevard/ 73 rd Avenue	Signal ³	>80	F	49	D	>80	F	55	D
7. Mountain Boulevard/ Keller Avenue	All-Way Stop ⁴ (Signal ³)	>50	F	12	В	>50	F	9	А
8. Mountain Boulevard/ I-580 WB Off-Ramp/ Shone Avenue	Side Street Stop ² (Signal ³)	33 (EB)	D	8	A	>50 (EB)	F	9	А
9. I-580 EB Off-Ramp/ Keller Avenue	All-Way Stop ⁴ (Signal ³)	20	с	18	В	>50	F	20	В
16. I-580 WB Off-Ramp/ Seminary Avenue/ Kuhnle Avenue	Side Street Stop ² (Signal ³))	>50 (NB)	F	20	с	>50 (NB)	F	19	в
18. I-580 EB Off-Ramp/ Overdale Avenue/ Seminary Avenue	Side Street Stop ² (Signal ³)	27 (NB)	с	7	А	>50 (NB)	F	11	в

Notes: LOS = Level of Service; NB = northbound; SB = southbound; WB = westbound; EB = eastbound.

1. Traffic control with mitigation shown in parenthesis.

 Side-street stop-controlled intersection level of service based on worst approach delay per vehicle (in seconds), according to the Highway Capacity Manual (HCM) – Special Report 209 (Transportation Research Board, 2000). The worst approach is indicated in parenthesis.

3. Signalized intersection level of service is based on average control delay per vehicle (in seconds), according to HCM 2000.

4. All-way stop-controlled intersection level of service is based on average delay per vehicle (in seconds), according to HCM 2000.

5. Westbound 95th percentile queue greater than 1,000 feet without mitigation.

Source: Fehr & Peers, 2006.

Step 2 – Summarize Capital Improvements and Estimate Costs

During preparation of the EIR and the Conditions of Approval, cost estimates were developed for the improvements identified in Chapter 2. The cost estimates have been reviewed and updated for the purposes of this TIF and TIP study, and are based on actual construction and design engineering costs (where available), current City fees, and local construction cost trends. Table 4 lists the proposed TIF/TIP improvements and their associated costs. The detailed cost estimate worksheets for each project are included in Appendix E.

TABLE 4 COST ESTIMATES FOR SOUTHEAST OAKLAND TIF/TIP IMPROVEMENTS				
Location	Cost Estimate			
1 and 2. I-580 WB On-Ramp/Edwards Avenue and	\$961,300			
I-580 EB Off-Ramp/Edwards Avenue				
4. Greenly Drive/Edwards Avenue	\$107,800			
6. MacArthur Boulevard/73 rd Avenue	\$622,300			
7. Mountain Boulevard/Keller Avenue	\$823,200			
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	\$409,100			
9. I-580 EB Off-Ramp/Keller Avenue	\$411,400			
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	\$757,000			
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	\$417,600			
A. Study of Edwards Avenue and Seminary Avenue operational \$350,000 improvements				
Total Cost of Improvements	\$4,859,700			
Source: HQE, Incorporated, 2006; City of Oakland, 2006.				

Step 3 – Summarize the Amount of New Development

For purposes of a fee calculation, it is important to identify the amount of future growth expected in the fee program area, in order to produce a reasonably accurate estimate of the new development that will be subject to the fee. Existing and future land use projections from the ACCMA model were used to determine the amount of new development expected in the TIF and TIP area.

The most recent available set of Oakland land use data from the Alameda County CMA model was used to estimate the total amount of new development expected in the TIF and TIP area. The ACCMA model projections were provided in four basic land use categories: residential dwelling units, retail jobs, service jobs, and manufacturing jobs. Because there are different traffic-generating characteristics from different housing types, the City requested that the residential land use projections be broken down into two

categories: traditional single-family dwelling units and other residential types. Many of the residential development projects being proposed in this area of the City involve duet homes, townhomes, or other attached residential types that may have somewhat different traffic characteristics from traditional single-family development. For the Leona Quarry development, it is known that the project includes 404 townhomes and 19 single-family dwellings. For all other areas in the Southeast Oakland TIF/TIP area, it was assumed that the future residential development would be 40% single-family and 60% other types, which is generally consistent with the current development plans for the Oak Knoll site. The resulting development projections are shown in Table 5. The program area is expected to grow by approximately 1,400 residential units over the next 20 years; most of those new units are expected to be in the Leona Quarry and the Oak Knoll development areas. Employment is expected to grow by about 850 jobs, with most of the additional employment expected in the southernmost part of the TIF and TIP area, west of I-580 and south of 98th Avenue.

The concept of Dwelling Unit Equivalents (DUEs) is commonly used in fee studies to account for the fact that different development types generate traffic with different characteristics and with different levels of impact on the city's transportation system. DUE conversion factors typically account for differences in peak hour trip rates for each development type, as well as the effects of pass-by trips that are often associated with commercial uses. For example, retail uses tend to generate more trips per square foot than office uses, but those retail trips tend to be shorter in length because people often visit several retail establishments during the course of a single trip, or stop by a retail business on their way to their final destination. The DUE conversion process accounts for these differences in impact on the transportation system.

The DUE factors developed for the Southeast Oakland TIF/TIP are shown in Table 6, and reflect the PM peak hour trip rates published in the Institute of Transportation Engineer's (ITE's) *Trip Generation* Manual, 7th Edition and the percentage of new trips (i.e., excluding pass-by trips) published in the San Diego Association of Governments (SANDAG) *Brief Guide of Vehicular Traffic Generation Rates*, July 1998. The results were normalized to the single-family dwelling unit rate to produce a DUE per unit rate for each land use category.

The projected growth in each land use category shown in Table 5 was multiplied by the DUE conversion factors shown in Table 6, and the resulting total number of DUEs by category is shown in Table 7. Appendix B provides detailed land use and DUE results for each traffic analysis zone in the Southeast Oakland TIF/TIP area.

TABLE 5 SOUTHEAST OAKLAND TIF AND TIP AREA HOUSING AND EMPLOYMENT PROJECTIONS		
Projected Growth		
422		
1,008		
481		
387		
0		

TABLE 6 DUE CONVERSION FACTORS							
Land Use Category Unit PM Peak Hour Trip % New Trips ² DUE per Unit							
Single-Family Residences	Dwelling Unit	1.01	100%	1.00			
Other Residences	Dwelling Unit	0.78	100%	0.77			
Retail	Job	1.13	50%	0.56			
Service	Job	0.46	65%	0.30			
Manufacturing	Job	0.42	80%	0.33			

Notes:

1. PM peak hour trip rates from ITE Trip Generation, 7th Edition, using the following categories:

ITE #210: Single-Family Detached Housing used for Single-Family Residential category

ITE #231: Low-Rise Residential Condo/Townhouse used for Other Residential category

ITE #820: Shopping Center used for Retail Jobs category

ITE #710: General Office Building used for Service Jobs category

ITE #110: General Light Industrial used for Manufacturing Jobs category

2. SANDAG Brief Guide of Vehicular Traffic Generation Rates, July 1998.

Source: Fehr & Peers, 2006.

TABLE 7 GROWTH CONVERTED TO DUES									
Land Use Category	Total Growth	DUE Per Unit	Growth Converted to DUEs						
Single-Family Residential Units	422	1.00	422						
Other Residential Units	1,008	0.77	777						
Retail Jobs	481	0.56	270						
Service Jobs	387	0.30	115						
Manufacturing Jobs	0	0.33	0						
TOTAL DUEs		TOTAL DUEs 1,584							

Step 4 – Determine Fee Amounts

To determine the appropriate fee amounts assessed to individual developments, the total cost of the capital improvements (Step 2) was divided by the total number of new DUEs (Step 3). Table 8 displays the calculated impact fees by land use category. The total cost of the TIF and TIP improvement projects as shown in Table 4 (\$4,859,700) was divided by the total number of DUEs expected in the program area as shown in Table 7 (1,584) to calculate the resulting fee per DUE (\$3,068). An administration fee of 3% was added, to bring the final total fee to \$3,160 per DUE. These figures do not reflect any reductions or subsidies that the City may choose to implement.

TABLE 8 PRELIMINARY SOUTHEAST OAKLAND TIF AND TIP FEE CALCULATIONS					
Land Use Category	Fee/Unit				
Single-Family Residential	\$3,160/Unit				
Other Residential	\$2,440/Unit				
Retail	\$5.89/Square Foot				
Service	\$3.12/Square Foot				
Manufacturing	\$1 44/Square Foot				
Source: Fehr & Peers, 2006.					

4. FINDINGS

This report provides a detailed discussion of the elements of the proposed Southeast Oakland TIF and TIP and explains the analytical techniques used to develop this nexus study. The report addresses all the fee program elements required by AB 1600, as described below:

Identifying the purpose of the fee

The purpose of the Southeast Oakland TIF and TIP is to mitigate the traffic impacts of new development within the study area, by developing an overall transportation system that will accommodate the expected future traffic demand. Specifically, there are a number of intersections where traffic operations are expected to deteriorate with the addition of traffic from new development in the study area. Table 3 provides the traffic operations analysis results for these intersections and identifies the operations problems that are expected to occur if mitigation measures are not implemented. This TIF program is designed to fund the necessary mitigation measures and ensure that the traffic operations at the affected intersections remain within the City's standards.

Identifying how the fee will be used and the facilities to be funded through the fee

Revenues from the Southeast Oakland TIF and TIP will be used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. These projects include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area. Table 2 describes all of the capital improvement projects to be funded through the fee program, and Table 4 summarizes the costs of those improvements. The TIF and TIP will be administered by the City of Oakland Public Works Agency.

Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed

Different types of development generate traffic with different characteristics and the nexus analysis presented in this report accounts for the differential impact on the local street system caused by different development types. Tables 5, 6 and 7 and the accompanying text describe the amount of new development of different types expected in the Southeast Oakland area over the next 20 years, including residential, retail, and professional/service types of uses. The traffic generated by these new uses will have effects on the nine intersections described above; the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

<u>Determining a reasonable relationship between the need for the public facility and the type of</u> <u>development on which the fee is imposed</u>

The need for the capital improvements listed in Table 2 was established in the Leona Quarry EIR. This report confirms that the mitigation measures identified in that EIR would adequately address the expected traffic operations issues (through the analysis described in Chapter 3, Step 1) by determining that implementation of the improvements would return the traffic operations at the nine affected intersections to within the City's standards. Table 1 shows there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for

improvements at these locations is attributable to traffic generated by new development. As described above, the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development

The nine intersections included in this study currently operate within the City's standards, indicating that there are no existing deficiencies at the improvement locations included in the TIF program. Further, the analysis presented in Table 3 shows that traffic generated by the new development expected in the Southeast Oakland TIF program area will cause operational deficiencies at the study locations; those deficiencies are mitigated by the identified capital improvement projects. Thus, the TIF program is targeted toward the public improvements necessary to accommodate the traffic generated by new development within the program area.

The cost estimates for the capital improvement projects have been carefully developed and reviewed to ensure that all reasonably anticipated cost elements have been accounted for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs are then distributed among the different development types in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category.

ļ

1

ŕ

APPENDIX A: SUMMARY OF FEE PROGRAMS IN OTHER JURISDICTIONS

Appendix A

Currently, the City of Oakland does not collect transportation related impact fees for new development, although the city does charge fees for other purposes, such as affordable housing. For purposes of information and comparison, Tables A-1 and A-2 summarize citywide development fees and transportation related development fees in other Northern California jurisdictions.

		TABL TOTAL IMP	E A-1 PACT FEES ¹		
City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ² (per ksf)	Restaurant ² (per ksf)	Retail ² (per ksf)
Alameda	\$3,229	\$2,644	\$3,378	\$3,485	\$3,485
Berkeley	\$4,695	\$1,947	\$12,253	\$48,910	\$63,541
Concord	\$27,323	\$26,823	\$6,754	\$8,234	\$8,234
Emeryville	\$7,239	\$2,643	\$5,370	\$8,624	\$6,923
Fremont	\$25,049	\$16,938	\$5,975	\$7,732	\$5,903
Sacramento	\$6,505	\$4,934	\$3,148	\$1,033	\$1,033
San Francisco	\$23,270	\$23,270	\$22,000	\$10,000	\$12,000
San Jose	\$26,716	\$24,090	\$14,246	\$3,806	\$3,806
Average	\$15,503	\$12,911	\$9,140	\$11,478	\$13,116
Minimum	\$3,229	\$1,947	\$3,148	\$1,033	\$1,033
Maximum	\$27,323	\$26,823	\$22,000	\$48,910	\$63,541

Notes:

 Total impact fee includes transportation impact fee and other development fees for parks, affordable housing, child care, sewer, drainage, fire, public facilities, etc. (building permit and plan check fees are excluded, as are fees collected by school districts or other outside agencies).

2. Calculation based on gross floor area.

Source: Fehr & Peers and HQE, Inc, March 2006.

		TABL	.E A-2 ON IMPACT FEES		
City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ¹ (per ksf)	Restaurant ¹ (per ksf)	Retail ¹ (per ksf)
Alameda ²	\$1,128	\$866	\$3,040	\$3,140	\$3,140
Berkeley	\$4,695	\$1,947	\$7,253	\$43,910	\$58,541
Concord	\$2,588	\$2,088	\$5,920	\$7,400	\$7,400
Emeryville	\$1,976	\$1,384	\$1,970	\$5,224	\$3,523
Fremont	\$2,513	\$1,949	\$5,000	\$6,360	\$5,000
Sacramento	\$380	\$316	\$318	\$600	\$600
San Francisco	-	-	\$10,000	\$10,000	\$10,000
San Jose	\$6,994	\$5,596	\$10,440		-
Average	\$2,534	\$1,768	\$5,493	\$9,579	\$11,026
Minimum	\$380	\$316	\$318	\$600	\$600
Maximum	\$6,994	\$5,596	\$10,440	\$43,910	\$58,541

Notes:

ļ

į

1. Calculation based on gross floor area.

2. City of Alameda Transportation Fee estimated based on discussion with city staff.

Source: Fehr & Peers and HQE, Inc, March 2006.

Final Draft Report – Southeast Oakland Traffic Improvement Fee Study September 2006

1

APPENDIX B: TIF AND TIP AREA AND LAND USE PROJECTIONS

TIF and TIP Area

Figure B-1 presents a detailed view of the TIF and TIP area, including the numbers of the TAZs from the Alameda County CMA model that are within the program area.

Review of Land Use Projections

We compared the land use forecasts used in the Leona Quarry EIR with the most recent set available from the City's economic consultant (referred to as the Kaiser EIR dataset). The Leona Quarry EIR dataset projected to the year 2020, while the Kaiser EIR projected to 2025. Comparisons of household and employment totals for the study area from each dataset's respective horizon year showed very small differences of about 1% for households and 1.4% for employment. A summary of these comparisons is provided in Table B-1.

In a zone-by-zone comparison, the larger differences between the two datasets occur primarily in zones 135 and 136, which are in the far southern part of the study area and are unlikely to have much impact on travel through the intersections included in this traffic impact fee. Zone 123, located just south of Seminary Avenue near the Seminary interchange, also shows some increase in households, but that appears to be simply a recalibration of existing conditions; no growth in households is projected between the base year and the horizon year in either of the two datasets.

Based on this review, it was reasonable to conclude that the most recent set of land use projections are not substantially different from the projections used in the Leona Quarry EIR and thus would not substantially change the traffic forecasts in the study area.

Estimate of New Development in TIF Program Area

Existing and future land use projections from the CMA model were used to determine the amount of new development expected in the TIF program area. For each of the traffic analysis zones (TAZs) in the study area, the change in land use from the 2005 to the 2025 CMA model represents the expected amount of new development. Non-residential conversions were made in accordance with the Memorandum on *Revisions to Estuary Plan for Traffic Modeling* from Barry Miller, March 15, 1999 which consolidated non-residential land use projections into the following categories: manufacturing jobs, retail jobs and service jobs. Table B-2 presents the change in land use projected for each TAZ in the TIF program area.

Table B-3 presents more specific land use category conversion factors based on the Barry Miller memorandum that may prove useful in applying the fee to specific development applications.

					F	ABLE B-1						
		CON	IPARISON (DF LEONA (JUARRY EI	R AND KA!	SER EIR LA	ND USE PR	OJECTION	S		
		Leona Qi	uarny EIR			Kaise	r EIR			Difference (Ka	liser - Leon	8)
TAZ	Total Ho	useholds	Total Em	oloyment	Total Hou	seholds	Total Em	ployment	Total Ho	useholds	Total Em	ployment
	2005	2020	2005	2020	2005	2025	2005	2025	2005	2020 or 2025	2005	2020 or 2025
115	485	485	647	677	481	502	647	677	-4	17	0	0
122	47	47	878	958	43	43	878	958	4	4	0	0
123	871	871	648	696	976	976	548	596	105	105	-100	-100
124	546	546	254	254	514	514	294	294	-32	-32	40	40
134	626	626	63	73	646	665	63	63	20	39	0	-10
135	779	865	296	170	606	606	96	86	-173	-259	-200	-84
136	255	255	540	765	196	364	561	1,058	-59	109	21	293
137	253	253	4	4	319	319	4	4	66	66	0	0
348	1,257	1,257	211	214	1,168	1,168	211	214	-89	-89	0	0
574	1,357	1,754	67	96	1,178	1,667	67	72	-179	-87	0	-24
575	631	631	0	0	707	707	0	0	76	76	0	0
582	494	494	42	42	496	496	42	42	2	2	0	0
585	655	655	37	43	746	777	37	43	91	122	0	0
604	212	212	0	0	222	222	0	0	10	10	0	0
605	563	563	56	76	545	545	56	76	-18	-18	0	0
606	1,134	1,134	30	41	1,090	1,090	30	37	-44	-44	0	4
607	301	339	51	42	343	350	51	42	42	11	0	0
608	312	312	4	14	352	386	4	7	40	74	0	-7
623	354	354	13	13	317	317	14	14	-37	-37	1	-
624	434	434	66	66	436	436	66	66	2	2	0	0
625	105	162	1,395	1,471	70	128	1,395	1,471	-35	-34	0	0
626	170	170	109	115	182	231	100	100	12	61	ο'n	-15
630	170	718	188	253	212	766	188	253	42	48	0	0
634	0	0	319	347	٢	-	319	347	-	-	0	0
Total	12,011	13,137	5,951	6,463	11,846	13,276	5,704	6,553	-165	139	-247	96
Source: Hausrath	Economics Gro	oup, 2005.										

:

I

				TABI	.E B-2				
			FORE	CASTED GRO	WTH IN STUDY	AREA			
		Estimated Growth	h (2005-2025)			Estimated Gr	owth in DUEs	(2005-2025) ⁴	
TAZ	Total		Employment ³		Single-Family	Other	Emplo	oyment	-
	Residential Units ²	Manufacturing	Retail	Service	Residential	Residential	Retail	Service	lotal
115	21		0	30	æ	10	0	6	27
122	0	0	0	80	0	0	0	24	24
123	0	0	5	43	0	0	3	13	16
124	0	0	0	0	0	0	0	0	0
134	19	0	0	0	8	Ø	0	0	16
135	0	0	0	0	0	0	0	0	0
136	168	0	376	121	67	78	210	36	391
137	0	0	0	0	0	0	0	0	0
348	0	0	0	e	0	0	0	1	1
574	489	0	0	5	45	343	0	+	389
575	0	0	0	0	0	0	0	0	0
582	0	0	0	0	0	0	0	0	0
585	31	0	0	9	12	15	0	2	29
604	0	0	0	0	0	0	0	0	0
605	0	0	10	10	0	0	9	ო	б
606	0	0	0	7	0	0	0	2	2
607	2	0	0	0	e	e	0	0	9
608	34	0	0	3	14	15	0		30
623	0	0	Q	0	0	0	0	0	0
624	0	0	0	Q	0	0	0	0	0
625	58	Q	48	28	23	27	27	ø	85
626	49	0	0	0	20	22	0	0	42
630	554	0	30	35	222	256	17	10	505
634	0	0	12	16	0	0	7	5	12
Grand Total	1,430	0	481	387	422	777	270	115	1,584
Notes:									
1. Growth ca	loulated as the dif	fference between yes	ar 2005 and 202	5 iand use projec	tions from the Kais	ser EIR, as shown	in Table B-1.		
2. Total Resi	dential Units were	e divided into Single-	Family and Othe	r Residential as I	ollows: For Leona	Quarry developme	ent, assumed 19 s	single-family and 4	04 other. For all
other deve	elopment areas, a:	ssumed 40% single-	ramity and 60%	orner. iee ersteren Pote	ii and Canina land	(E)	00/ Dotail and E0	197. Convice)	
3. INCOMA	model land use &	alegory Ulrier was t	divideo Inio me∵ ≭ore providad in	Tahla A of the re	in and then rounded	t use categories (J	ola Netali altu vo	A CELAICE).	
	as conventeu to Di		בנטיא אוסעומפת וו						
	edia, zuuu.								

		TABL	E B-3 ERSION FACTORS	5	
Land Use	Unit	Size/Employee	DUE Catego	ry Employment	/Employee ¹
Category	0,,,,,	olze/Zmpioyou	Manufacturing	Retail	Service
Office	sf	300	0.5	0.25	0.25
Retail	sf	300	0	0.5	0.5
Dining	sf	300	0	0.5	0.5
Entertainment	sf	300	0	0.5	0.5
Wholesale	sf	750	0	0.75	0.25
Off-price Retail	sf	750	0	0.75	0.25
Warehousing	sf	1500	0	0.5	0.5
Light Industry	sf	750	1	0	0
Heavy Industry	sf	1000	1	0	0
Public Use	sf	1000	0	0.5	0.5
Notos:					

Notes:

ł

ī

1. The consolidated CMA model land use category "Other" was divided into the fee program Retail and Service land use categories (50% Retail and 50% Service).

•

Source: Barry Miller, Revisions to Estuary Plan for Traffic Modeling Memorandum, March 15, 1999.

Final Draft Report – Southeast Oakland Traffic Improvement Fee Study September 2006

APPENDIX C: DESCRIPTION OF EDWARDS/SEMINARY CORRIDOR STUDY

DESCRIPTION OF EDWARDS/SEMINARY CORRIDOR STUDY

Leona Quarry COA & MMRP 26g and 26h - Preliminary Study Scope

The Leona Quarry COA & MMRP 26g and 26h call for a study of other long-term operational improvements along the Edwards Avenue, 82nd Avenue segment and Seminary Avenue routes, particularly the Foothill Boulevard-82nd Avenue segment and the MacArthur Boulevard-Seminary Avenue segment and including any further intersections improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR. The preliminary scope is listed below. Note that a more detailed study scope will need to be developed in the future.

Study Purpose

The purpose of the study is to identify, package and prioritize traffic capacity, safety and calming improvements for the above-referenced roadways and potential cross-connectors under existing and 2025 conditions. The study is needed because several intersections and roadways, including arterial, collector and local streets, are projected to operate at unacceptable levels of service under 2025 conditions. The study must answer the concerns of the community regarding congestion and safety on the area roadways due to through traffic and traffic diversion onto local residential streets between I-580 and the Airport/Coliseum area as well as growth from nearby cumulative development. The recommended improvements will be presented to the City Council to request authorization to incorporate them into a previously approved Traffic Improvement Fee/Traffic Improvement Program, if any.

Study Breadth/Influence Area

The study area includes a local roadway network bounded by I-580 to the north, Foothill Boulevard and MacArthur Boulevard to the south, Seminary Avenue to the west and Golf Links Road/82nd Avenue to the east, and includes potential cross-connectors, such as Sunnymere Avenue, because these are routes that provide access between I-580 and the Coliseum/Airport Area, similar to Edwards Avenue. Study intersections and roadway segments include both signalized and unsignalized intersections as well as local, collector, and arterial roadways as follows:

Edwards Avenue at and between

Sunnymere Avenue Greenly Drive Sunkist Drive Hillmont Drive Outlook Avenue Lacey/Ney Avenue

Seminary Avenue at and between Outlook Avenue MacArthur Boulevard

Camden Street Foothill Boulevard

ļ

Golf Links Road/82nd Ave at and between Fontaine Street 82nd Avenue MacArthur Boulevard

Sunnymere Avenue at and between Seminary Avenue and Edwards Avenue

<u>Hillmont Drive at and between</u> Seminary Avenue and 75th Avenue

Outlook Avenue at and between Seminary Avenue and Parker Avenue

<u>Greenly Drive at and between</u> Edwards Avenue and Keller Avenue

File: N:\PROJECTS\WC05-2176 Leona Quarry Fee\Deliverables\Reports\First Admin Draft\City Comments on First Draft\Scope for Edwards Corridor Study.doc

Sunkist Drive at and between Edwards Avenue and 82nd Avenue

Ney Avenue at and between Edwards Avenue and 82nd Avenue

Keller Avenue at and between Fontaine Street and Greenly Drive

Fontaine Street at and between Keller Avenue Crest Avenue Golf Links Road

MacArthur Boulevard at and between Seminary Avenue 64th Avenue 68th Avenue 73rd Avenue 75th Avenue Parker Avenue Ritchie Street 82nd Avenue

<u>Foothill Boulevard at and between</u> Seminary Avenue Camden Street 68th Avenue

Camden St at and between Seminary Avenue 64th Avenue Foothill Boulevard

68th Avenue at and between Outlook Avenue MacArthur Boulevard Foothill Boulevard

64th Avenue at and between Outlook Avenue MacArthur Boulevard Camden Boulevard Foothill Boulevard

The alternatives to be analyzed include existing and 2025 conditions with and without improvements, including two alternative improvement scenarios, during the a.m. and p.m. peak periods. The measures of effectiveness include level of service, speed, travel time, travel distance, traffic volumes, volume-to-capacity ratio, delay, queue lengths, number of stops, collisions, and benefit/cost ratio.

Study Approach/Model

The community is concerned about through traffic and traffic diversion to local residential streets between I-580 and the Airport/Coliseum area as well as growth from nearby cumulative development. A regional travel demand model would probably not be adequate to estimate traffic diversion on potential cut-through routes on a series of local residential streets because it would not be able to model the various types of traffic control and calming devices along these streets. Analytical Highway Capacity Manual (HCM) methods could estimate the capacity measures of effectiveness; however, they cannot estimate the effect queuing and traffic diversion. A study that uses both HCM analytical techniques and microsimulation techniques would probably best suit the needs of this study. The recommended software that incorporates both techniques is Snychro/SimTraffic.

1

ł

APPENDIX D: DETAILED TRAFFIC LEVEL OF SERVICE ANALYSIS WORKSHEETS

ł

ł

ļ

	≯	-	\mathbf{F}	•	+	•	1	1	1	>	Ţ	-
Miowamiant	r (s)			- WMB)L	NWI≌111	WBR	- Meille	MN BH		(3)BJL	- {ex]#}[]	
Lane Configurations Sign Control Grade	۲	î⊧ Free 0%			র্ Free ০%	۴	٦	₽ Stop 0%			Stop 0%	
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians	661 0.90 734	18 0.90 20	122 0.90 136	43 0.90 48	47 0.90 52	70 0.90 78	234 0.90 260	47 0.90 52	14 0.90 16	0 0.90 0	0 0.90 0	0 0.90 0
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type								None			None	
Median storage veh) Upstream signal (ft) pX, platoon unblocked		1252										
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	130			156			1704	1782	88	1678	1772	52
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	130 4.1	i	:	156 4.1			1704 7.1	1782 6.5	88 6.2	1678 7.1	1772 6.5	52 6.2
tF (s) p0 queue free % cM capacity (veh/h)	2.2 50 1455			2.2 97 1425			3.5 0 43	4.0 0 39	3.3 98 971	3.5 0 0	4.0 100 40	3.3 100 1015
Dinexellerm, Lermer		्रिक्षि 🎗	Wishit.	- WME3*92	- ND-SE			(-1) , where t				alasti she she ta National
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS	734 734 0 1455 0.50 74 10.0 A	156 0 136 1700 0.09 0 0.0	100 48 0 1425 0.03 3 3.8 A	78 0 78 1700 0.05 0 0.0	260 260 0 43 6.12 Err Frr	68 0 16 50 1.35 156 377.8 F						
Approach Delay (s) Approach LOS	8.2		2.1	8	3009.5 F							
Intersection Summary Average Delay Intersection Capacity Ut Analysis Period (min)	ilization		1886.7 62.9% 15	l(CU Lev	el of Ser	rvice		В			

	۶		4	A.	N				
Movement	1 A.	1881	NW/Bhit	ANNEXES.	ંસ્ટ્રાય	19 18 18			
Lane Configurations Sign Control Grade		∱ Free 0%	∱ Free 0%		5 Stop 0%	ť			
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)	0 0.90 0	805 0.90 894	262 0.90 291	0 0.90 0	32 0.90 36	623 0.90 692			
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol	291	936			None 0.75 1186	291		2	
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s)	291 4.1				1247 6.4	291 6.2			
tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1271				3.5 75 144	3.3 7 748			
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	894 0 1700 0.53 0 0.0 0.0	291 0 1700 0.17 0 0.0 0.0	36 36 0 144 0.25 23 38.1 E 40.7 E	692 0 692 748 0.93 325 40.8 E					
Intersection/Summary Average Delay Intersection Capacity Ut Analysis Period (min)	ilization		15.5 59.0% 15	[(CU Leve	el of Servic	e	В	

		\mathbf{F}	F	4	1	1	
MrøMcInnteinti	기억망비 /	177 F5 (F4)	WMBIL-	- WASHI'-			
Lane Configurations	î ,			ۍ آب	¥		ne dan senara di kung tendan pada da da pada da
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0			4.0	4.0		
Lane Util. Factor	1.00			1.00	1.00		
Frt	0.99			1.00	0.94	·	
Fit Protected	1.00			1.00	0.97		
Satd. Flow (prot)	1850			1860	1699		
Flt Permitted	1.00			0.98	0.97		
Satd. Flow (perm)	1850			1818	1699		
Volume (vph)	685	37	21	818	103	93	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	761	41	23	909	114	103	
RTOR Reduction (vph)	2	0	0	0	49	0	
Lane Group Flow (vph)	800	Ó	0	932	168	0	
Turn Type			pm+pt			-	
Protected Phases	4		3	8	2		
Permitted Phases			8				
Actuated Green, G (s)	45.1	- 0		45.1	11.0		
Effective Green, g (s)	46.1			46.1	12.0		
Actuated g/C Ratio	0.70			0.70	0.18		
Clearance Time (s)	5.0			5.0	5.0		
Vehicle Extension (s)	3.0			3.0	3.0		
Lane Grp Cap (vph)	1290			1268	308		
v/s Ratio Prot	0.43				c0.10		
v/s Ratio Perm				c0.51			
v/c Ratio	0.62			0.74	0.55		
Uniform Delay, d1	5.3			6.2	24.6		
Progression Factor	1.00			1.00	1.00		
Incremental Delay, d2	2.2			2.2	2.0		
Delay (s)	7.6			8.5	26.5		
Level of Service	A			А	С		
Approach Delay (s)	7.6			8.5	26.5		
Approach LOS	А			А	С		
Inite Estation Standarts w						$(p^{*})^{p} = (\mathcal{A}_{1,2} \otimes \mathcal{A}_{2,2})^{p} = (p^{*})^{p} = (p^{*})^{p$	
HCM Average Control D)elav		10.1	-	ICM Lev	vel of Servic	e B
HCM Volume to Capacit	tv ratio		0.70	•			
Actuated Cycle Length (s)		66.1	5	Sum of le	ost time (s)	8.0
Intersection Capacity Ut	ilization		78.0%	l	CU Leve	el of Service	e D
Analysis Period (min)			15				_
c Critical Lane Group							

÷

!

	≯		\mathbf{F}	¥		×	•	t	1	1	Ļ	-
MioWellint Inti				-\\ <u>\</u> B	-WME311	Wist		NIST	NER	୍ୱାର୍ଣ୍ଣା		(1) (1)
Lane Configurations	٢	۴	۴	۲	ĥ			đ þ			≜ †≱	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1843			3425			3494	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	1770	1863	1583	1770	1843			3425			3494	1583
Volume (vph)	140	497	25	37	653	50	152	352	76	101	285	44
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	156	552	28	41	726	56	169	391	84	112	317	49
RTOR Reduction (vph)	0	0	18	0	2	0	0	9	0	0	0	0
Lane Group Flow (vph)	156	552	· 10	41	780	0	0	635	0	0	429	49
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4									Free
Actuated Green, G (s)	5.0	45.5	45.5	32.5	73.0			18.0		1	15.0	131.0
Effective Green, g (s)	6.0	46.5	46.5	33.5	74.0			19.0			16.0	131.0
Actuated g/C Ratio	0.05	0.35	0.35	0.26	0.56			0.15			0.12	1.00
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	'		3.0			3.0	
Lane Grp Cap (vph)	81	661	562	453	1041			497			427	1583
v/s Ratio Prot	c0.09	c0.30		0.02	c0.42			c0.19			c0.12	
v/s Ratio Perm			0.01									0.03
v/c Ratio	1.93	0.84	0.02	0.09	0.75			1.28			1.00	0.03
Uniform Delay, d1	62.5	38.7	27.4	37.1	21.5			56.0			57.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	458.7	9.0	0.0	0.1	4.9			139.5			44.7	0.0
Delay (s)	521.2	47.7	27.4	37.2	26.4			195.5			102.2	0.0
Level of Service	F	D	С	Ď	Ċ			F	,		F	A
Approach Delay (s)		147.3			27.0			195.5			91.7	
Approach LOS		F			С			F			F	
in constantion i Stylinning inv			N. N. N.						ta gianta di		9. J. A.	
HCM Average Control	Delay		112.0	ŀ	ICM Le	vel of Se	ervice		F			
HCM Volume to Capaci	ity ratio		0.94									
Actuated Cycle Length	(s)		131.0	S	Sum of I	ost time	(s)		12.0			
Intersection Capacity U	tilizatior	ļ	87.6%	1	CU Lev	el of Sei	rvice		Е			
Analysis Period (min)			15									

c Critical Lane Group

ł

ļ

l

	۶		\rightarrow	1		A.	-	1	1	\$	Ļ	-
MIOMENNERN	(11) (12) (12) (12) (12) (12) (12) (12)		To an En	WW BIL	SW 811	WBR:	- IN BL	NNBAF	NER	୍ଞା	- 1 88	(Sp)D
Lane Configurations Sign Control Volume (vph) Peak Hour Factor	100	4 Stop 149	58	26	4 Stop 331	539	58	41 Stop 495	117	35	র্ধ Stop 35	83
Hourly flow rate (vph)	111	166	64	29	368	599	0.50 64	550	130	0.90 39	0.90 39	0.90 92
Otherethout Learner (] [] [] [] []	WASH	WW In Star	NET	NES 2	288 29 29	A Digg					
Volume Total (vph) Volume Left (vph) Volume Right (vph) Hadj (s) Departure Headway (s) Degree Utilization, x Capacity (veh/h) Control Delay (s) Approach Delay (s) Approach LOS	341 111 64 -0.01 8.2 0.78 430 34.9 34.9 D	397 29 0.07 8.2 0.91 431 51.0 110.6 F	599 0 599 -0.67 7.5 1.25 487 150.0	339 64 0 0.13 8.3 0.78 428 33.9 41.5 E	405 0 130 -0.19 8.0 0.90 439 47.8	78 39 0 0.28 9.7 0.21 352 14.0 13.5 B	92 0 92 -0.67 8.7 0.22 388 13.1					
Intensection Summerry Delay HCM Level of Service Intersection Capacity Ut Analysis Period (min)	lization		68.9 F 79.4% 15		ÇŲ Leve	el of Ser	vice		D			<u>,</u>

HCM Unsignalized Intersection Capacity Analysis
8: I-580 WB Off-Ramp & Mountain Boulevard

	٭		\mathbf{r}	1		•	-	1	1	\$	Ļ	-
Miowennami	្រុះខ្លាំង		E BR	N ∭8]L(AW BILL		- NEL	NBN -	NER	(0) and (0)	ြက္ခုန္နားမျ	(13) (13) (13) (13) (13) (13) (13) (13) (13)
Lane Configurations Sign Control Grade	٦	Stop 0%	۲		↔ Stop 0%			∱ Free 0%	dad yana di Uninki yi Zinan yake di kurya		∱ Free 0%	
Volume (veh/h)	270	0	25	8	0	15	0	392	0	0	127	0
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)	0.90 300	0.90 0	0.90 28	0.90 9	0.90 0	0.90 17	0.90 0	0.90 436	0.90 0	0.90 0	0.90 141	0.90 0
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked		None			None							
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	593	577	141	604	577	436	141			436		
vCu, unblocked vol	593	577	141	604	577	436	141			436		
tC, single (s) tC, 2 stage (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free % cM capacity (veb/b)	26 406	100 428	97 907	98 397	100 428	97 621	100 1442			100		
	പററ	-720	307 WWD66	INCEALS	420				antani an an		an state of the st	ustrain. A
Volume Total	300	28 28	26	436	<u>ାହାର</u> 141			an a		antight and a start of the		and a state of the second
Volume Left	300	0	-9	0	0							
Volume Right	0	28	17	0	0							
cSH	406	907	519	1700	1700							
Volume to Capacity	0.74	0.03	0.05	0.26	0.08							
Queue Length 95th (ft)	147	2	4	0	0							
Control Delay (s)	35.1	9.1	12.3	0.0	0.0							
Approach Delay (c)	320	А	123	0.0	0.0							
Approach LOS	02.9 D		12.5 B	0.0	0.0							
laiclict=totilolaicStuaninatstry	2. C. N.				an National					1998 Sec. 9.9		n na sana sa
Average Delay			11.9			alabartan dikirikini karanda		a da dinisi men is dinisi san	reinvelsen finnes fin	and in the second s		NAME OF COMPANY
Intersection Capacity Uti	ilization		48.9%	10	CU Leve	el of Sei	vice		А			
Analysis Period (min)			15									

i

ł

amp & Mountain Boulevard

í

	۶	->	\mathbf{F}	¥	4	*	1	1	1	\	¥	1
MioMeinneini		:46[B]](SEA BAN	WMBIL,)∦®)i[NDE		53E/11	
Lane Configurations Sign Control Volume (vph) Peak Hour Factor	0 0.90	♣ Stop 115 0.90	83 0.90	371 0.90	↑ Stop 104 0.90	0 0.90	0 0.90	Stop 0 0.90	0 0.90	194 0.90	4 Stop 172 0.90 101	36 0.90
Houny now rate (vpn)	0	120	JZ	412	110	U	U	U	U	210	191	40
Direction Lance Volume Total (vph) Volume Left (vph) Volume Right (vph) Hadj (s) Departure Headway (s) Degree Utilization, x Capacity (veh/h) Control Delay (s) Approach Delay (s) Approach LOS	220 0 92 -0.22 6.6 0.40 521 13.9 13.9 B	412 412 0.53 6.9 0.79 513 30.0 25.6 D	116 0 0.03 6.4 0.21 544 9.8	311 216 0 0.38 7.1 0.61 486 19.5 16.7 C	136 0 40 -0.17 6.5 0.25 527 10.5							
Intersection Summary Delay HCM Level of Service Intersection Capacity Ut Analysis Period (min)	ilization		20.1 C 53.2% 15)(CU Leve	el of Ser	vice		A			

HCM Unsignalized Intersection Capacity Analysis 16: Kuhnle Avenue & I-580 WB Off Ramp

	٭	-	\mathbf{r}	€	4	×.	1	1	1	- \	Ļ	-
Mroxy.@inntsinit	୍ୱାଳ୍ପା				WBa	WADER.	NBL	NBI	NER	(a) (a) (b) (b) (a)	(9) (9)	
Lane Configurations Sign Control Grade	ሻ	∱ Free 0%			₽ Free 0%		٢	P∔ Stop 0%			↔ Stop 0%	
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage	705 0.90 783	17 0.90 19	0 0.90 0	0 0.90 0	29 0.90 32	25 0.90 28	216 0.90 240	25 0.90 28	10 0.90 11	1 0.90 1	0 0.90 0	173 0.90 192
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft)								None			None	
vC, conflicting volume vC1, stage 1 conf vol	60			19			1824	1646	19	1657	1632	46
vCu, unblocked vol tC, single (s)	60 4.1			19 4.1			1824 7.1	1646 6.5	19 6.2	1657 7.1	1632 6.5	46 6.2
tF (s) p0 queue free % cM capacity (veh/h)	2.2 49 1544			2.2 100 1598			3.5 0 29	4.0 43 49	3.3 99 1059	3.5 96 27	4.0 100 50	3.3 81 1023
Direction, I lemest			\W\[₽] []	10.1818	(NE) (2)	Marker H			<u>i segui</u>			
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	783 783 0 1544 0.51 75 9.7 A 9.5	19 0 1700 0.01 0 0.0	60 0 28 1700 0.04 0.0 0.0	240 240 0 8.28 Err Err F 3620.7 F	39 0 11 67 0.58 61 115.0 F	193 1 192 844 0.23 22 10.5 B 10.5 B						
Average Delay Intersection Capacity Ut Analysis Period (min)	ilization		1808.9 78.5% 15		CU Leve	el of Ser	vice		D			

.

I

Synchro 6 Report Page 6

.

HCM Unsignalized Intersection Capacity Analysis 18: Seminary Avenue & Overdale Avenue

• [

	٦		\mathbf{r}	1	-	A.	4	1	1	1	¥	-
Mowiment Lane Configurations Sign Control	SEE SE	€EBD €Î∳ Free		/WMBI	₩Bito 41} Free	AWER?	NRL	Stop	ANERS	્રંભારી	SBI दी Stop	tig <u>br</u>
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage	0 0.90 0	0% 838 0.90 931	1 0.90 1	5 0.90 6	0% 357 0.90 397	0 0.90 0	2 0.90 2	0% 0 0.90 0	14 0.90 16	62 0.90 69	0% 38 0.90 42	341 0.90 379
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol	397			932			1541	None 1339	466	889	None 1340	198
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s)	397 4.1			932 4.1			1541 7.5	1339 6.5	466 6.9	889 7.5	1340 6.5	198 6.9
tC, 2 stage (s) tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1158			2.2 99 730			3.5 93 33	4.0 100 150	3.3 97 543	3.5 70 230	4.0 72 150	3.3 53 810
Direction Lenes Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	466 0 0 1158 0.00 0 0.0 0.0	467 0 1 1700 0.27 0 0.0	204 6 0 730 0.01 1 0.4 A 0.2	WE 22 198 0 0 1700 0.12 0 0.0	18 18 2 16 183 0.10 8 26.7 D 26.7 D	9831 111 69 0 191 0.58 79 47.1 E 21.0 C	379 0 379 810 0.47 63 13.3 B					
Average Delay Intersection Capacity Ut Analysis Period (min)	ilization		5.9 44.5% 15	IC	CU Leve	el of Ser	vice		A			

i

Į.

ł

ł

ī.

1

Leona	Quarry	Fee	Study
	Cu	imula	tive PM

	≁	→	\rightarrow	4	4	×.	1	1	1	-	ŧ	-
Miowennienti	BBI S			WVEII (.)Wishi	WWE HER	MBL	NI-MO	NISIR.	<u>्रिक्</u> राल्गे ्	(SE)]]	
Lane Configurations Sign Control Grade	آ	Free 0%			4 Free 0%	۴	۲	∲ Stop 0%			Stop 0%	
Volume (veh/h) Reak Hour Factor	723 0 00	104 0.90	202 n gn	24 0.90	21 0 90	31 n gn	142 0 90	37	49 n an	0	0	0 0 0
Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)	803	116	224	27	23	34	158	41	54	0	0	0
Median type Median storage veh) Upstream signal (ft)		1252						None			None	
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	58			340			1911	1946	228	1874	2023	23
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	58 4.1		1	340 4.1		·	1911 7.1	1946 6.5	228 6.2	1874 7.1	2023 6.5	23 6.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free % cM [°] capacity (veh/h)	48 1546			98 1219			0 30	0 30	93 812	0 0	100 27	100 1053
Dinexolitoral, Licence ?!	្រៀងវិទ្រាំ	日間2	WWES OF	WMB322	181331	NB/20						
Volume Total	803	340	50	34	158	96						
Volume Leit	003 N	224	27 0.	34	100	54						
cSH	1546	1700	1219	1700	30	67						
Volume to Capacity	0.52	0.20	0.02	0.02	5.26	1.42						
Queue Length 95th (ft)	78	0	2	0	Err	200						
Control Delay (s)	9.8	0.0	4.4	0.0	Err	359.5						
Lane LOS	A		A		F	F						
Approach Delay (s) Approach LOS	6.9		2.6	t	5363.1 F							
initeinstetoittoint Olulinalinnetay					ar Artista Artista						9 1 1	
Average Delay			1093.8	-								
Analysis Period (min)	ilization		61.3% 15	10	JU Lev	el of Sei	vice		В			

ł

	٦	>	-	۰.	×	1		
MIO.V. Intelnit	u ta n u)	(E)BHF	W/B/J	WER	્રામ્	(SER)		. e 25
Lane Configurations Sign Control		↑ Free	↑ Free		۲ Stop	۳		
Grade Volume (veh/h)	Ο	0% 971	0% 160	٥	0% 122	654		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	0	1079	178	0	136	727		
Pedestrians Lane Width (ft)								
Walking Speed (ft/s)								
Right turn flare (veh)								
Median type Median storage yeb)					None			
Upstream signal (ft)		936						
pX, platoon unblocked	470				0.77	470		
vC1, stage 1 conf vol	178				1297	178		
vC2, stage 2 conf vol	470					470		
tC, single (s)	178 4.1				1335 6:4	178 6.2		
tC, 2 stage (s)						,		
tF (s)	2.2		1		3.5	3.3		
cM capacity (veh/h)	1398				130	865		
Pilnerations, the mess?			: Sii i					New York
Volume Total	1079	178	136	727				
Volume Left	0	0	136 0	U 727				
cSH	1700	1700	130	865				
Volume to Capacity	0.63	0.10	1.05	0.84		1.		
Queue Length 95th (ft)	0	0	188	250				
Control Delay (s)	0.0	0.0	157.8 E	26.7				
Approach Delay (s)	0.0	0.0	г 47.3	U				
Approach LOS			E					
Intersciellon Sylmmetry	alan da ana ang sana ang sana Sana ang sana				<u>\$_</u> \$\$			
Average Delay	ilization	1	19.3 64.5%	10	<u>^ </u>	al of Somior		c
Analysis Period (min)	mzauon	I	15	I.				C

		\mathbf{r}	4		1	1					
Mioxy=Innt=Int	1785I		WW/BIL	W		NIE					
Lane Configurations	î ,			4	۲	and the same of the later, after our of the		na ini in i ka ni ji shigo,		den in an diainte ann an Annaichtean an Annaichtean a	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					
Total Lost time (s)	4.0	·		4.0	4.0						
Lane Util. Factor	1.00			1.00	1.00						
Frt	0.99			1.00	0.94						
Fit Protected	1.00			1.00	0.97						
Satd. Flow (prot)	1844			1856	1708						
Flt Permitted	1.00			0.80	0.97						
Satd. Flow (perm)	1844			1496	1708						_
Volume (vph)	913	74	55	738	65	47					
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90					
Adj. Flow (vph)	1014	82	61	820	72	52					
RTOR Reduction (vph)	2	0	0	0	22	0					
Lane Group Flow (vph)	1094	0	0	881	102	0					
Turn Type			pm+pt								_
Protected Phases	4		3	8	2	•					
Permitted Phases			8								
Actuated Green, G (s)	94.1			94.1	11.7						
Effective Green, g (s)	95.1			95.1	12.7						
Actuated g/C Ratio	0.82			0.82	0.11						
Clearance Time (s)	5.0			5.0	5.0						
Vehicle Extension (s)	3.0			3.0	3.0						
Lane Grp Cap (vph)	1514			1229	187						
v/s Ratio Prot	c0.59				c0.06						
v/s Ratio Perm				0.59							
v/c Ratio	0.72			0.72	0.54						
Uniform Delay, d1	4.6			4.5	48.8						
Progression Factor	1.00			1.00	1.00						
Incremental Delay, d2	1.7			2.0	3.2						
Delay (s)	6.3			6.5	52.0						
Level of Service	А			А	D						
Approach Delay (s)	6.3			6.5	52.0						
Approach LOS	А			А	D						
inicinsteteillenn Stulinnnenv		i (Sander) Sander (Sander)					t se so de la composición de la composi Na composición de la c		alari Sulari Certin. Mangalari		
HCM Average Control D)elay		9.1	ł	ICM Le	vel of Servic	e	A			
HCM Volume to Capacit	ty ratio		0.70								
Actuated Cycle Length ((s)		115.8	S	Sum of I	ost time (s)		8.0			
Intersection Capacity Ut	ilization		97.3%	10	CU Leve	el of Service		F			
Analysis Period (min)			15								
c Critical Lane Group											

1

ī.

	۶		\mathbf{r}	-		A.	1	1	1	1	ŧ	-
Mloxyeinnteinit.		(HBI)	- Meistre	-IWABL.	WIBIT	WER		N BI	NBR	. (S) [] [
Lane Configurations	٢	≜	7	۲	4			÷1.			朴ኄ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1848			3444			3508	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	1770	1863	1583	1770	1848			3444			3508	1583
Volume (vph)	213	747	227	39	534	31	148	431	68	90	413	221
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	237	830	252	43	593	34	164	479	76	100	459	246
RTOR Reduction (vph)	0	0	89	0	2	0	0	6	0	0	0	0
Lane Group Flow (vph)	237	830	163	43	625	0	0	713	, 0	0	559	246
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4									Free
Actuated Green, G (s)	14.0	69.7	69.7	7.3	63.0			26.0			18.0	141.0
Effective Green, g (s)	15.0	70.7	70.7	8.3	64.0			27.0			19.0	141.0
Actuated g/C Ratio	0.11	0.50	0.50	0.06	0.45			0.19			0.13	1.00
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	188	934	794	104	839			659			473	1583
v/s Ratio Prot	c0.13	c0.45		0.02	c0.34			c0.21			c0.16	
v/s Ratio Perm			0.10									0.16
v/c Ratio	1.26	0.89	0.20	0.41	0.75			1.08			1.18	0.16
Uniform Delay, d1	63.0	31.6	19.5	64.0	31.8			57.0			61.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	152.8	10.3	0.1	2.7	6.0			59.1			101.7	0.2
Delay (s)	215.8	41.9	19.7	66.7	37.7			116.1			162.7	0.2
Level of Service	F	D	В	E	D			F			F	A
Approach Delay (s)		68.9			39.6			116.1			113.1	
Approach LOS		E			D			F			F	
Interversion Summers	al da faring an 19 Al ang	n a san da s	li kan Selah	lagi yakati wa Matakatika min	a international design of the			le Marine Lastan	har and a state of the		r de la composición Anna de la composición	
HCM Average Control E	Delay		83.1	ł	ICM Lev	vel of Se	ervice		F			
HCM Volume to Capaci	ty ratio		0.98									
Actuated Cycle Length ((s)		141.0	5	Sum of k	ost time	(s)		12.0			
Intersection Capacity UI	tilization	ŀ	88.4%	l.	CU Leve	el of Ser	vice		Е			
Analysis Period (min)			15									
c Critical Lane Group												

i

i

ł

	٠		\mathbf{r}	4	-	*	-	Ť	1	1	ŧ	1
Monathing		× ⁴ [rs][b]	्राष्ट्रीय	_\W]6ĮL_	. WMBAIL	W. BOR	INBL	ONBIA.	N[B]⊮_	S.	ં (સંદર્શ)	S BR
Lane Configurations Sign Control		⇔ Stop			र्स Stop	7		41₽ Stop			∉ Stop	۴
Volume (vph)	54	449	93	14	241	219	114	325	251	47	28	137
Peak Hour Factor Hourly flow rate (vph)	0.90 60	0.90 499	0.90 103	0.90 16	0.90 268	0.90 243	0.90 127	0.90 361	0.90 279	0.90 52	0.90 31	0.90 152
Dimerciations, I reams #	- TEI SIA	WMB3 (1	Wits 22	NES ($\left \begin{bmatrix} \mathbf{G} \\ \mathbf{G} \\ \mathbf{I} \end{bmatrix} \left(\begin{bmatrix} \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{I} \end{bmatrix} \right) \right $	ા છે.					
Volume Total (vph)	662	283	243	307	459	83	152					
Volume Left (vph)	60	16	0	127	0	52	0					
Volume Right (vph)	103	0	243	0	279	0	152					
Hadj (s)	-0.04	0.06	-0.67	0.24	-0.39	0.35	-0.67					
Departure Headway (s)	8.2	8.7	8.0	8.5	7.9	9.6	8.7					
Degree Utilization, x	1.51	0.68	0.54	0.73	1.01	0.22	0,37					
Capacity (veh/h)	441	405	437	415	459	365	407					
Control Delay (s)	264.8	27.3	18.7	29.9	71.6	14.2	15.4					
Approach Delay (s)	264.8	23.3		54.9		14.9						
Approach LOS	F	С		F		В						
linikenieteicinieini (Steinniniteiry)								4 				
Delay HCM Level of Service			106.4 F						·			
Intersection Capacity Ul Analysis Period (min)	tilization		83.5% 15	l(CU Leve	el of Sei	rvice		E			
!												

	≯		\mathbf{F}	1	-	×.	-	1	1	5	Ļ	1
Miowcjinicanii		्राष्ट्र हिंद्र हिं हा हा हा हा हा हा हा हा हा हा हा हा हा	(6 8)		AW4311		NE.	INBI	NRK	ંજીશ્રી	୍ୱ ପ୍ରଥ୍ୟା	
Lane Configurations Sign Control	٦	Stop	7		∯ Stop			∱ Free			∱ Free	
Grade	405	0%	0	~	0%		0	0%		~	0%	•
Volume (ven/n) Peak Hour Factor	435	0 90	090 090	0 0.90	0.90	29 0.90	0 90	234 0.90	0 0	0 0 90	129	0 90
Hourly flow rate (vph)	483	0.00	9	7	0	32	0	260	Ö	0	143	0.00
Pedestrians Lane Width (ft)												
Walking Speed (ft/s)												
Right turn flare (veh)												
Median type		None			None							
Upstream signal (ft)												
pX, platoon unblocked	136	403	1/3	112	403	260	1/3			260		
vC1, stage 1 conf vol	400	400	140	ŢĮŹ	400	200	140			200		
vC2, stage 2 conf vol	136	403	1/3	112	403	260	1/13			260		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1	1.		4.1		
tC, 2 stage (s)	35	10	2 2	3.5	4.0	33	22			2.2		
p0 queue free %	5	100	99	99	100	96	100			100		,
cM capacity (veh/h)	509	536	904	545	536	779	1439			1304		
Dihisiqilloin), Uzhnisi (#		1813-2 -		NNES (F	(SR)(†		10. 19 10. 10					
Volume Lotal	483	9	39 7	260	143 0							
Volume Right	-00	9	32	0	ŏ							
cSH	50 9	904	725	1700	1700							
Volume to Capacity	0.95	0.01	0.05	0.15	0.08							
Queue Length 95th (ft)	299	1	4	0	0							
Lontrol Delay (S)	56.9 F	9.U A	10.2 B	0.0	0.0							
Approach Delay (s)	56.0	~	10.2	0.0	0.0							
Approach LOS	F		В									
Initerseculierin Steinaharethy	in and the second s				latin Statistics Statistics Margan Statistics		na <u>Stá</u> ls	$(\cdot, \cdot) \to (\cdot, \cdot)$				
Average Delay	ilizotion		29.9	1/	2111.00	al of Co	niec		٨			
Analysis Period (min)	mzation		49.770 15	10	SO Leve	51 01 561	VICE		А			

i

÷

İ

ł

	٭		\rightarrow	1		×.	-	1	1	1	Ļ	-
Włozweinateraki	ins)(,	41. [2] [1] [2]		Wisi,	With	WBR	NIEN	NBI	NER:	ST ST	(S)::[]	SER.
Lane Configurations		¢Î		٦	1						đ þ	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	0	124	46	320	168	0	0	0	0	464	188	100
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0,90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	138	51	356	187	0	0	0	0	516	209	111
Dhereilloin, llainteill	起影响。	W/8 1	WM 83 (2)	(S) () (S) ()	$\{s_{m}^{m}\}_{m}^{m}$		$\left\{ \left\{ e_{i},e_{i}\right\} \right\}$					
Volume Total (vph)	189	356	187	620	216							
Volume Left (vph)	0	356	0	516	0							
Volume Right (vph)	51	0	0	0	111							
Hadj (s)	-0.13	0.53	0.03	0.45	-0.33							
Departure Headway (s)	7.2	7.6	7.1	7.2	6.4							
Degree Utilization, x	0.38	0.75	0.37	1.24	0.39							
Capacity (veh/h)	492	472	503	507	550							
Control Delay (s)	14.5	28.4	12.9	147.3	12.2							
Approach Delay (s)	14.5	23.1		112.4						,		
Approach LOS	B	С		F								
linit-literentinging Stylinging by												
Delay			69.7						a to a find a fair a find a subscription			
HCM Level of Service			F									
Intersection Capacity Uti	lization		62.8%	l	CÜ Leve	el of Ser	vice		В			
Analysis Period (min)			15									
/												

ł

HCM Unsignalized Intersection Capacity Analysis 16: Kuhnle Avenue & I-580 WB Off Ramp

1

ł

	۶		\mathbf{r}	-	-	×.	1	1	1	1	Ļ	-
Momenteini		16 B)		WW Fill		WIBIR		्राष्ट्रि	MINR	(S) 5)	୍କାଞ୍ଚା	(10) (10) (10) (10) (10) (10) (10) (10)
Lane Configurations	ካ	_ †			4		ሻ	4			4)	
Sign Control		Free			Free			Stop			Stop	
Grade Volume (voh/h)	510	U% /1	0	0	0% 24	1Ò	314	0% 11	10	2	0%	60
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	577	46	0	0.00	27	21	349	49	21	3	0.00	67
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked	10			10			4000	10.17	10	4000	4000	
vC, conflicting volume	48			46			1303	1247	46	1282	1236	37
vC1, stage 1 conf vol							•					
vCu, unblocked vol	48			46			1303	1247	46	1282	1236	37
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
pu queue free % cM canacity (veb/b)	1550			1562			02	55 100	98	95	100	94 1035
			ADDITISTICS		a still a static	e data di si	J2	103	1024			1000
		1882 46		240	NB 2	70	al de la Station Station de la Station de Station de la Station de la			(art) - bailing and an Article and a state of the		
Volume Left	577	40	40 N	349	70 0	70 3						
Volume Right	0	ŏ	21	0	21	67						
cSH	1559	1700	1700	92	150	611						
Volume to Capacity	0.37	0.03	0.03	3.81	0.47	0.11						
Queue Length 95th (ft)	43	0	0	Err	54	10						
Control Delay (s)	8.7	0.0	0.0	Err	48.6	11.7						
Approach Delay (s)	80		0.0.8	г 1336 2	C	о 117						
Approach LOS	0.0		0.0 (F		В						
antelesterational Sultananeraw	are de			ру (с. 19 19 г. с. 19	ere de visi		San ta far	ang sanga	the state			· 新新新加加
Average Delay	Listen and Article		3018.2		H. A. Starter							
Intersection Capacity Ut	ilization	1	66.1%	IC	CU Leve	el of Sei	vice		С			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 18: Seminary Avenue & Overdale Avenue

Leona Quarry Fee Study Cumulative PM

	۶	-	\mathbf{F}	4	+	•	1	Ť	1	\	Ļ	1
Wox-Iment Lane Configurations Sign Control Grade		€BI €1 Free 0%	EPIN	W5L	€ C Free 0%	WWBIEV	Nibil	Stop		C P P	्डाइ/म दी Stop	<u>Visier</u> 7
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Bight turn flare (veh)	0 0.90 0	590 0.90 656	2 0.90 2	5 0.90 6	301 0.90 334	0 0.90 0	5 0.90 6	0 0.90 0	18 0.90 20	203 0.90 226	117 0.90 130	598 0.90 664
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol	334			658			1564	None 1002	329	693	None 1003	167
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s)	334 4.1			658 4.1			1564 7.5	1002 6.5	329 6.9	693 7.5	1003 6.5	167 6.9
tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1222			2.2 99 926			3.5 40 9	4.0 100 240	3.3 97 667	3.5 29 318	4.0 46 239	3.3 22 848
Diffection Lener Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	328 0 0 1222 0.00 0 0.0 0.0	330 0 2 1700 0.19 0 0.0	173 6 0 926 0.01 0 0.3 A 0.2	167 0 1700 0.10 0.10 0.0	NB41 26 6 20 41 0.63 57 189.9 F 189.9 F 189.9 F	356 226 0 284 1.25 422 176.3 F 76.3 F	664 0 664 848 0.78 201 22.8 C					
Intersection/Summary, Average Delay Intersection Capacity Uti Analysis Period (min)	ilization		40.5 58.8% 15	j	CU Leve	el of Ser	vice	4.5. (J. m.)	В			

Leona Quarry Fee Study 1: Edwards Avenue & I-580 WB Ramps

1

1

T

i

÷

	۶	->	\mathbf{F}	F	4	•	-	1	1	×	Ļ	-
Mencinnent				. \₩/i≣)L,	WISH	WER	NBL	NB1	N B R	(a)(o)	်းရှိနှင့် ကြို့ရှိခြင်	SBR
Lane Configurations	ኘካ	4			4	1	ሻ	^	۲			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	0.97	1.00			1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.87			1.00	0.85	1.00	1.00	0.85			
Fit Protected	0.95	1.00			0.98	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	3433	1619			1819	1583	1770	1863	1583			
Flt Permitted	0.95	1.00			0.98	1.00	0.95	1.00	1.00			
Satd. Flow (perm)	3433	1619			1819	1583	1770	1863	1583			
Volume (vph)	661	18	122	43	47	70	234	47	14	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	734	20	136	48	52	78	260	52	16	0	0	0
RTOR Reduction (vph)	0	62	0	0	0	70	0	0	13	0	0	0
Lane Group Flow (vph)	734	94	0	0	100	8	260	52	3	Ő	0	0
Turn Type	Split			Split		Perm	Split		Perm			
Protected Phases	2	2		6	6		4	4				
Permitted Phases						6			4			
Actuated Green, G (s)	42.5	42.5			8.3	8.3	16.2	16.2	16.2			
Effective Green, g (s)	43.5	43.5			8.3	8.3	16.2	16.2	16.2			
Actuated g/C Ratio	0.54	0.54			0.10	0.10	0.20	0.20	0.20			
Clearance Time (s)	5.0	5.0			4.0	4.0	4.0	4.0	4.0			
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1867	880			189	164	358	377	321			
v/s Ratio Prot	c0.21	0.06			c0.05		c0.15	0.03				
v/s Ratio Perm						0.01			0.00			
v/c Ratio	0.39	0.11			0.53	0.05	0.73	0.14	0.01			
Uniform Delay, d1	10.6	8.8			34.0	32.3	29.8	26.2	25.5			
Progression Factor	0.39	0.37			1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.5	0.2			2.7	0.1	7.2	0.2	0.0			
Delay (s)	4.6	3.4			36.7	32.4	37.0	26.3	25.5			
Level of Service	Α	А			D	С	D	С	С			
Approach Delay (s)		4.4			34.8			34.7			0.0	
Approach LOS		А			С			Ċ			Α	
Intenseted tem Stulingang fry		an a		a da an			2		Ś. S. J. S.			2 - 30 - 9.40 - 11
HCM Average Control D)elay		15.4	ŀ	ICM Le	vel of Se	ervice		В			
HCM Volume to Capacit	ty ratio		0.49									
Actuated Cycle Length ((s)		80.0	30.0 Sum of lost time (s)				12.0				
Intersection Capacity Ut	ilization		46.7%	% ICU Level of Service				А				
Analysis Period (min)			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis Fehr & Peers Associates, Inc.

•

Synchro 6 Report Page 1

,

	٠	-+		•	1	1				
MoMennicinii	. (EBL	. eşni	-WWB	(William)	ုများ					den al
Lane Configurations		•	•		۲	7				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Total Lost time (s)		4.0	4.0		4.0	4.0				
Lane Util. Factor		1.00	1.00		1.00	1.00				
Frt		1.00	1.00		1.00	0.85				
Flt Protected		1.00	1.00		0.95	1.00				
Satd. Flow (prot)		1863	1863		1770	1583				
Flt Permitted		1.00	1.00		0.95	1.00				
Satd. Flow (perm)		1863	1863		1770	1583				
Volume (vph)	0	805	262	0	32	623			·	
Peak-hour factor. PHF	0.90	0.90	0.90	0.90	0.90	0.90				
Adi, Flow (vph)	0	894	291	0	36	692				
RTOR Reduction (vph)	0	0	Ó	0	0	457				
Lane Group Flow (vph)	0	894	291	Ō	36	235				
Turn Type						Perm				
Protected Phases		2	6		4					
Permitted Phases						4				
Actuated Green, G (s)		56.2	56.2		15.8	15.8				
Effective Green, q (s)	-	56.2	56.2		15.8	15.8				
Actuated g/C Ratio		0.70	0.70		0.20	0.20				
Clearance Time (s)		4.0	4.0		4.0	4.0				
Vehicle Extension (s)		3.0	3.0		3.0	3.0				
Lane Grp Cap (vph)		1309	1309		350	313				
v/s Ratio Prot		c0.48	0.16		0.02					
v/s Ratio Perm						c0.15	·		u.	
v/c Ratio		0.68	0.22		0.10	0.75				
Uniform Delay, d1		6.8	4.2		26.3	30.2				
Progression Factor		1.00	0.26		1.00	1.00				
Incremental Delay, d2		2.9	0.3		0.1	9.5				
Delay (s)		9.7	1.4		26.4	39.7				
Level of Service		А	Α		C	D				
Approach Delay (s)		9.7	1.4		39.0	_				
Approach LOS		А	А		D					
Intension lon Summing		S. M. B. Barr			New Street Street					
HCM Average Control D	elay		19.6	-1	ICM Le	vel of Service		B		
HCM Volume to Capacity	v ratio		0.70	•				-		
Actuated Cycle Length (s	5)		80.0	S	um of l	ost time (s)		8.0		
Intersection Capacity Uti	ization		59.0%	Ĩ	CU Leve	el of Service		B		
Analysis Period (min)			15					-		

.

c Critical Lane Group

	-	\rightarrow	-		- 1	1		
Miora-Inteint	(12416) 11 (12416) 11		(WWE)I	NWIE II.	NBL	NER		i an
Lane Configurations	ĥ		٦	•	١			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0		4.0	4.0	4.0			
Lane Util. Factor	1.00		1.00	1.00	1.00			
Frt	0.99		1.00	1.00	0.94			
Flt Protected	1.00		0.95	1.00	0.97			
Satd. Flow (prot)	1850		1770	1863	1699			
Flt Permitted	1.00		0.95	1.00	0.97			
Satd. Flow (perm)	1850		1770	1863	1699			
Volume (vph)	685	37	21	818	103	93		
Peak-hour factor, PHF	0.90	0 90	0.90	0.90	0.90	0.90		
Adi, Flow (vph)	761	41	23	909	114	103		
RTOR Reduction (vph)	2	0	-0	000	49	0		
Lane Group Flow (vph)	800	õ	23	909	168	· Ö		
Turn Type			Prot					· · · · · · · · · · · · · · · · · · ·
Protected Phases	4		3	8	2			
Permitted Phases								
Actuated Green, G (s)	34.6	ΰ.	2.0	40.6	10.4			
Effective Green, g (s)	34.6		2.0	40.6	10.4			
Actuated g/C Ratio	0.59		0.03	0.69	0.18			
Clearance Time (s)	4.0		4.0	4.0	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	1085		60	1282	299			
v/s Ratio Prot	0.43		0.01	c0.49	c0.10			
v/s Ratio Perm								
v/c Ratio	0.74		0.38	0.71	0.56			
Uniform Delay, d1	8.9		27.9	5.6	22.2			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	2.6		4.0	1.8	2.4			
Delay (s)	11.5		31.9	7.4	24.6			
Level of Service	В		C	A	C			
Approach Delay (s)	11.5		-	80	24 6			
Approach LOS	В			A	C			
Intre istercition is Sturnahaterav						and the second second		
HCM Average Control D	elav		11 3			el of Service		
HCM Volume to Canacit	v ratio		0.68	i			D	
Actuated Cycle ength (s)		59 N	c	um of k	net time (c)	9 N	
Intersection Capacity Lit	-) ilization		61 1%			al of Service	0.U D	
Analysis Period (min)			15	, in			D	

c Critical Lane Group

ł

ļ

ł

Ţ

	۶	-	\mathbf{r}	4	◄	•	-	1	1	- \ _	Ļ	-
MOXCINITEIN		- EBIC		NW/BIL	AMBTE	WMB/R	NBL.	NET	NBR	୍ୟା	SEL	
Lane Configurations	ሻሻ	4	۲	ኝ	ţ			ፈኄ	Andre BARRARIA	. Linnad vol 1.43	*1 <u>.</u>	<u>7</u>
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	3433	1863	1583	1770	1843		-	3425			3494	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	3433	1863	1583	1770	1843			3425			3494	1583
Volume (vph)	140	497	25	37	653	50	152	352	76	101	285	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	156	552	28	41	726	56	169	391	84	112	317	49
RTOR Reduction (vph)	0	0	15	0	2	0	0	11	0	0	0	0
Lane Group Flow (vph)	156	552	13	41	780	0	0	633	Õ	Ō	429	49
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4		-					-	-	Free
Actuated Green, G (s)	7.9	52.9	52.9	3.6	48.6			21.6			14.8	110.9
Effective Green, g (s)	7.9	52.9	52.9	3.6	48.6			22.6			15.8	110.9
Actuated g/C Ratio	0.07	0.48	0.48	0.03	0.44			0.20			0.14	1.00
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0			5.0			5.0	
Vehicle Extension (s)	3.0	.3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	245	889	755	57	808			698			498	1583
v/s Ratio Prot	c0.05	0.30		0.02	c0.42			c0.18			c0.12	
v/s Ratio Perm		·	0.01		·							0.03
v/c Ratio	0.64	0.62	0.02	0.72	0.97			0.91			0.86	0.03
Uniform Delay, d1	50.1	21.5	15.3	53.1	30.3			43.1			46.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	5.3	1.4	0.0	35.1	23.2			15.4			14.2	0.0
Delay (s)	55.4	22.9	15.3	88.2	53.6			58.5			60.7	0.0
Level of Service	E	Ċ	В	F	D			E			Ε	A
Approach Delay (s)		29.5			55.3			58.5			54.5	
Approach LOS		С			Е			E			D	
INTERNSECOREIN STUDIARAMETAY		a da da com	n ar an	an a	and Geographic	Sister og og					en an trainn an tar an tar Taran an tar	og vite og en som e En som en som
HCM Average Control D)elay		48.8		ICM Lev	el of Se	rvice	and a sub-ratio	D	kölön (1.52525 sörödin (1223	5 A. S. B. A. B. M. C. S. B. B.	en e the finis and
HCM Volume to Capacit	ty ratio		0.91						-			
Actuated Cycle Length (s)		110.9	S	Sum of Ic	ost time	(s)		16.0			
Intersection Capacity Ut	ilization		82.1%	IC	CU Leve	l of Ser	viće		E			
Analysis Period (min)			15									

ì

c Critical Lane Group

ľ

	۶	-	•	•	-	×	*	t	1	1	Ŧ	4
Mioveloat-Init			(BR)	WMB	WMBII	WABIR _	NISI -		NINE	႞႞ၛႜ႞	ાકામ	୍ୟଟ୍ଟାମ୍
Lane Configurations		ፋጉ			÷.	- 1		र्स कि			र्स	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Util. Factor		0.95			1.00	1.00		0.95			1.00	1.00
Frt		0.97			1.00	0.85		0.97			1.00	0.85
Fit Protected		0.98			1.00	1.00		1.00	-		0.98	1.00
Satd. Flow (prot)		3384			1856	1583		3432			1817	1583
Flt Permitted		0.75			0.96	1.00		0.92			0.67	1.00
Satd. Flow (perm)		2594			1792	1583		3187			1243	<u>1583</u>
Volume (vph)	100	149	58	26	331	539	58	495	117	35	35	83
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adi, Flow (vph)	111	166	64	29	368	599	64	550	130	39	39	92
RTOR Reduction (vph)	0	27	0	0	0	72	0	19	0	0	0	58
Lane Group Flow (vph)	0	314	0	0	397	527	0	725	0	0	78	34
	Perm			Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)		21.8			21.8	21.8		17.5			17.5	17.5
Effective Green, a (s)		21.8			21.8	21.8		17.5			17.5	17.5
Actuated g/C Ratio		0.46			0.46	0.46		0.37			0.37	0.37
Clearance Time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Vehicle Extension (s)		3.0			3.0	3.0		3.0			3.0	3.0
Lane Gro Cap (vph)		1196		·	826	730		1179			460	586
v/s Ratio Prot												
v/s Ratio Perm		0.12			0.22	c0.33		c0.23			0.06	0.02
v/c Ratio		0.26			0.48	0.72		0.62			0.17	0.06
Uniform Delay, d1		7.8			8.8	10.3		12.2			10.0	9.6
Progression Factor		1.00			1.00	1.00		1.00			1.00	1.00
Incremental Delay, d2		0.1	1.		0.4	3.5		1.0			0.2	0.0
Delay (s)		7.9			9.3	13.8		13.1			10.2	9.6
Level of Service		A			A	В		В			B	Α
Approach Delay (s)		7.9			12.0	_		13.1			9.9	
Approach LOS		A						B			A	
Interstate III in Stulin Intersy	(1997), Maria (1997) An Angara (1997), Angara	and a subset	وشجه فطفيتهم وارد وتنق	القندي ففضده		a and a second	an a		Later research and start	(4751(7)62-2.5))a 22-25-25-25-25-25-25-25-25-25-25-25-25-2		
HCM Average Control [Delay		11.6		HCM Le	vel of S	ervice		В			
HCM Volume to Capaci	ity ratio		0.67		_							
Actuated Cycle Length	(s)		47.3		Sum of	lost time	e (s)		8.0			
Intersection Capacity U	tilization	٦	71.4%	I	ICU Lev	el of Se	rvice		C			
Analysis Period (min)			15									

c Critical Lane Group

ł

ļ

	۶	-+	\mathbf{i}	1	-	•	1	1	~	1	Ļ	4
Mioxelincini	္း စြာစိုး အဖြံ့			WV(B)L	AWAN BAL	WAR	NEL	NEW	NEE	્યન્યઓ	a see the	(c. n 14)
Lane Configurations	The second s	4			<u>ф</u>	2.2.1.2.14mar 12	and the second	*	T. IVASIAN			19494
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0			4.0		1000	4 0	1000
Lane Util. Factor	0.95	0.95			1.00			1.00			1.00	
Frt	1.00	0.98			0.91			1.00			1.00	
Fit Protected	0.95	0.96			0.98			1.00			1.00	
Satd. Flow (prot)	1681	1658			1669			1863			1863	
Flt Permitted	0.74	0.74			0.89			1.00			1.00	
Satd. Flow (perm)	1310	1281			1508			1863			1863	
Volume (vph)	270	0	25	8	0	15	0	392	0	0	127	.0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	300	0	28	9	0	17	0	436	0	0	141	0
RTOR Reduction (vph)	0	15	0	0	13	0	0	0	0	Ō	0	Ō
Lane Group Flow (vph)	151	162	0	0	13	0	0	436	0	0	141	Ō
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8							_	
Actuated Green, G (s)	9.7	9.7			9.7			21.0			21.0	
Effective Green, g (s)	9.7	9.7			9.7			21.0			21.0	
Actuated g/C Ratio	0.25	0.25			0.25			0.54			0.54	
Clearance Time (s)	4.0	4.0			4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0			.3.0			3.0			3.0	
Lane Grp Cap (vph)	328	321			378			1011			1011	<u> </u>
v/s Ratio Prot								c0.23			0.08	
v/s Ratio Perm	0.12	c0.13			0.01							
v/c Ratio	0.46	0.50			0.04			0.43			0.14	
Uniform Delay, d1	12.3	12.4			11.0			5.3			4.4	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	1,0	1.3			0.0			0.3			0.1	
Delay (s)	13.3	13.7			11.0			5.6			4.4	
Level of Service	В	В			В			А			А	
Approach Delay (s)		13.5			11.0			5.6			4.4	
Approach LOS		В			В			А			А	
inticiestereitioin (Stulaninitciny/	an a				an a	en an	neparen (d. Antonio de la	or of the spectra Case Baseries	and a first file.	an dia manana Manana manana	iya ya Karasi wana ƙaraba	
HCM Average Control D	elay		8.4	H	CM Lev	el of Se	rvice		A			
HCM Volume to Capacit	y ratio		0.45									
Actuated Cycle Length (s)		38.7	S	um of lo	st time	(s)		8.0			
Intersection Capacity Uti	ilization		42.2%	IC	U Leve	l of Serv	vice		А			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis Fehr & Peers Associates, Inc.

Synchro 6 Report Page 6

ļ

	۶	-	\mathbf{F}	•	-	×.	•	1	1	4	Ļ	4
Mto)Məlaatəlalı	19 B P 10			WIEL	W/B/I	- Williams	NEL	- NET	NISE	(a) inj	(Sing)	(ব)(ব)
Lane Configurations	A reaction of the second second second	t.			*	er e planeter 20. no fan de		s of the state of the second		and the set of a set	.ተተ.	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1000	1000	1000
Total Lost time (s)		4.0		4.0	4.0	1000	.000	1000	1000	1000	4.0	1300
Lane Util. Factor		1.00		1.00	1.00						0.95	
Frt		0.94		1.00	1.00						0.00	
Flt Protected		1.00		0.95	1.00						0.00	
Satd. Flow (prot)		1758		1770	1863						3409	
Fit Permitted		1.00		0.95	1.00						0,00	
Satd. Flow (perm)		1758		1770	1863						3409	
Volume (vph)	0	115	83	371	104	0	0	0	0	194	172	36
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	128	92	412	116	0	0	0	0	216	191	40
RTOR Reduction (vph)	0	33	0	0	0	Õ	Ō	õ	0	0	9	0
Lane Group Flow (vph)	0	187	Ó	412	116	Ō	Õ	ŏ	Ũ	ŏ	438	Ő
Turn Type				Prot		····				Split		
Protected Phases		2		1	6					4	4	
Permitted Phases										•	•	
Actuated Green, G (s)		11.2		17.3	32.5						12.2	
Effective Green, g (s)		11.2		17.3	32.5						12.2	
Actuated g/C Ratio		0.21		0.33	0.62						0.23	
Clearance Time (s)		4.0		4.0	4.0						4.0	
Vehicle Extension (s)		3.0		3.0	3.0						3.0	
Lane Grp Cap (vph)		374		581	1149						789	
v/s Ratio Prot		c0.11		c0.23	0.06						c0.13	
v/s Ratio Perm												
v/c Ratio		0.50		0.71	0.10						0.55	
Uniform Delay, d1		18.3		15.5	4.1						17.9	
Progression Factor		1.00		1.00	1.00						1.00	
Incremental Delay, d2		1.1		4.0	0.0						0.8	
Delay (s)		19.3		19.5	4.2			1			18.7	
Level of Service		В		В	А						B	
Approach Delay (s)		19.3			16.1			0.0			18.7	
Approach LOS		В			В			Α			В	
lipitelisteleidelei Siviataariiny			ê quê rê					· 新聞一編 286-14	hilan (aliga aliy	an a		
HCM Average Control D	elav		17.7	H	CMLev	el of Se	rvice	Louistin kas Vedetan dal. 1917	R	hanisa di katala kat	alahan ar ang ang	
HCM Volume to Capacity	y rátio		0.61		2 201	2, 2, 00			U			
Actuated Cycle Length (s	5)		52.7	S	um of ic	ost time	(s)		12.0			
Intersection Capacity Uti	, lization		53.2%	l	CU Leve	l of Ser	vice		Δ			
Analysis Period (min)			15						~			
c Critical Lane Group												

Leona Quarry Fee Study 16: Kuhnle Avenue & I-580 WB Off Ramp

ţ

ļ

	٠	->	\mathbf{F}	4	-	×	1	1	1	1	Ļ	4
Moxemment	- EB		្ត [ខ្មៅស] ស្ត្រ ស្ត្រី ខ្មែរ ស្ត្រី ស្ត្	WWF	- NW(B)II	WWB In	NBL	NBI	NBR	- SUL	(a) [n) [1]	8333
Lane Configurations	ካካ	•			î.,		ሻ	<u>t</u> .		and a set of the set of	<u>.</u>	51.007894(C.132
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Lane Util. Factor	0.97	1.00			1.00		1.00	1.00			1.00	
Frt	1.00	1.00			0.94		1.00	0.96			0.87	
Fit Protected	0.95	1.00			1.00		0.95	1.00			1.00	
Satd. Flow (prot)	3433	1863			1745		1770	1784			1612	
Flt Permitted	0.95	1.00			1.00		0.59	1.00			1.00	
Satd. Flow (perm)	3433	1863			1745		1108	1784			1611	
Volume (vph)	705	, 17	0	0	29	25	216	25	10	1	0	173
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	783	19	0	0	32	28	240	28	11	1	0	192
RTOR Reduction (vph)	0	0	0	0	23	0	0	8	0	0	142	Ó
Lane Group Flow (vph)	783	19	0	0	37	0	240	31	0	0	51	0
Turn Type	Prot						Perm			Perm		
Protected Phases	5	2			6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	18.3	32.0			9.7		14.2	14.2			14.2	
Effective Green, g (s)	18.3	32.0			9.7		14.2	14.2			14.2	
Actuated g/C Ratio	0.34	0.59			0.18		0.26	0.26			0.26	
Clearance Time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)	1159	1100			312		290	467			422	
v/s Ratio Prot	c0.23	0.01			c0.02			0.02				
v/s Ratio Perm							c0.22				0.03	
v/c Ratio	0.68	0.02			0.12		0.83	0.07			0.12	
Uniform Delay, d1	15.4	4.6			18.7		18.8	15.0			15.2	
Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00	
Incremental Delay, d2	1.6	0.0			Ö.2		17.3	0.1			0.1	
Delay (s)	17.0	4.6			18.8		36.2	15.1			15.4	
Level of Service	В	А			В		D	В			В	
Approach Delay (s)		16.7			18.8			33.2			15.4	
Approach LOS		В			В			Ċ			B	
linixen selendelini Stulaningeliny		n († 1957) Statuska sklav	line (m. 1947) Anno an Anno an Anno		wiencist straig behanistist sinds			Argo dan ge ka in cinati		anin yanan ya		
HCM Average Control D)elay		20.1	H	ICM Lev	el of Se	ervice		С		100000000000000000000000000000000000000	AND IN THE REAL PROPERTY AND INTERPOPERTY AN
HCM Volume to Capacit	ty ratio		0.60									
Actuated Cycle Length ((s)		54.2	S	um of lo	ost time	(s)		12.0			
Intersection Capacity Ut	ilization		59.5%	IC	CU Leve	el of Ser	viće		В			
Analysis Period (min)			15									

c Critical Lane Group

ļ

	≯		\rightarrow	-	-	•	-	1	1	- \	Ļ	-
Wtoweinsteanst		, EBT		AWV/E)L	WW/BAT	Winter		NEST	NER		- (SIB)	(Q]m)(r)
Lane Configurations		<u>ቀ</u> ሱ	and an and the second		<u>ተ</u> ት		and and a state of the state of the state	£		Section 2 and a section of the		7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	4.0
Lane Util. Factor		0.95			0.95			1.00			1.00	1.00
Frt		1.00			1.00			0.88			1.00	0.85
Flt Protected		1.00			1.00			0.99			0.97	1.00
Satd. Flow (prot)		3539			3537			1630			1807	1583
Flt Permitted		1.00			0.94			0.97			0.82	1.00
Satd. Flow (perm)		3539			3336			1592			1521	1583
Volume (vph)	0	838	1	5	357	0.	2	0	14	62	38	341
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	931	1	6	397	0	2	0.	16	69	42	379
RTOR Reduction (vph)	0	0	0	0	0	.0	0	12	0	0	0	244
Lane Group Flow (vph)	0	932	0	0	403	0	0	6	0	0	111	135
Turn Type				Perm			Perm			Perm		Perm
Protected Phases		2			6			. 8			4	
Permitted Phases				6			8			4		4
Actuated Green, G (s)		17.1			17.1			9.2			9.2	9.2
Effective Green, g (s)		17.1			17.1			9.2			9.2	9.2
Actuated g/C Ratio		0.50			0.50			0.27			0.27	0.27
Clearance Time (s)		4.0			4.0			4.0			4.0	4.0
Vehicle Extension (s)		3.0			3.0			3.0			3.0	3.0
Lane Grp Cap (vph)		1764			1663			427			408	425
v/s Ratio Prot		c0.26										
v/s Ratio Perm					0.12			0.00			0.07	c0.09
v/c Ratio		0.53			0.24			0.01			0.27	0.32
Uniform Delay, d1		5.9			4.9			9.2			9.9	10.0
Progression Factor		1.00			1.00			1.00			1.00	1.00
Incremental Delay, d2		0.3			0.1			0.0			0,4	0.4
Delay (s)		6.1			5.0			9.2			10.3	10.5
Level of Service		Α			Α			А			В	В
Approach Delay (s)		6.1			5.0			9.2			10.4	
Approach LOS		Α			А			А			В	
Internstated Iterations Stupmannerry	ng katalan Katalan	and all the second	Carlos de la composición de la composi Como de la composición		and and a second se	a son to the son a		lan series esta series			et ren van d	
HCM Average Control D	elay [—]		7.1	Н	ICM Lev	el of Se	ervice		A			Contraction of the second s
HCM Volume to Capacity	y ratio		0.45									
Actuated Cycle Length (s	s)		34.3	S	um of lo	ost time	(s)		8.0			
Intersection Capacity Uti	lization		44.5%	IC	CU Leve	el of Ser	vice		A			
Analysis Period (min)			15									

c Critical Lane Group

I

ł

ļ

	۶	-	\mathbf{F}	4	-	×.	*	1	1	1	Ļ	1
Mio)%=Innt=Inti	्राङ्गाः	ne)	Stellin (WW B	. WERE	- Welk	NEI	NBII.	- KIER	्रीह्याः	(Sin II)	SBR
Lane Configurations	ኘኘ	Ţ.			र्स	7	٦	•	7		· · · · · · · · · · · · · · · · · · ·	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	0.97	1.00			1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.90			1.00	0.85	1.00	1.00	0.85			
Fit Protected	0.95	1.00			0.97	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	3433	1679			1814	1583	1770	1863	1583			
Fit Permitted	0.95	1.00			0.97	1.00	0.95	1.00	1.00			
Satd. Flow (perm)	3433	1679			1814	1583	1770	1863	1583			
Volume (vph)	723	104	202	24	21	31	142	37	49	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	803	116	224	27	23	34	158	41	54	0	0	0
RTOR Reduction (vph)	0	55	0	0	0	31	0	0	45	0	0	0
Lane Group Flow (vph)	803	285	0	. 0	50	3	158	41	9	0	0	0
Turn Type	Split			Split		Perm	Split		Perm			
Protected Phases	2	2		6	6		4	4				
Permitted Phases						6			4			
Actuated Green, G (s)	47.8	47.8			6.5	6.5	12.7	12.7	12.7			
Effective Green, g (s)	48.8	48.8			6.5	6.5	12.7	12.7	12.7			
Actuated g/C Ratio	0.61	0.61			0.08	0.08	0.16	0.16	0.16			
Clearance Time (s)	5.0	5.0			4.0	4.0	4.0	4.0	4.0			
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	2094	1024			147	129	281	296	251			
v/s Ratio Prot	c0.23	0.17			c0.03		c0.09	0.02				
v/s Ratio Perm						0.00			0.01			
v/c Ratio	0.38	0.28			0.34	0.02	0.56	0.14	0.03			
Uniform Delay, d1	7.9	7.3			34.7	33.8	31.1	28.9	28.5			
Progression Factor	0.56	0.40			1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.3	0.4			1.4	0.1	2.6	0.2	0.1			
Delay (s)	4.8	3.4			36.1	33.9	33.6	29.2	28.5			
Level of Service	A	A			D	С	С	С	С			
Approach Delay (s)		4.4			35.2			31.8			0.0	
Approach LOS		А			D			С			А	
Intensection Summercy		(Appendis de la company) Also also also also also also also also a	RULES A			ve stati		un de la composition br>Composition de la composition de la comp		1.	De la companya	9 N.S.
HCM Average Control E	Delay		10.8	-	ICM Le	vel of S	ervice		B			
HCM Volume to Capaci	ty ratio		0.41									
Actuated Cycle Length	(s)		80.0	9	Sum of I	ost time	(s)		12.0			
Intersection Capacity U	tilization	1	41.8%	I	CU Lev	el of Se	rviće		Α			
Analysis Period (min)			15									

c Critical Lane Group

ļ

	۶	>	-	×.	1	1				
MOM INCINT	말라		WIBIT	WMANP.	્રા					
Lane Configurations		^	1		ሻ	۴		ananahari arta (na 'na 'na yn 11 yn 11 yn 14 an	1	
Ideal Flow (vphpl) 1	900	1900	1900	1900	1900	1900				
Total Lost time (s)		4.0	4.0		4.0	4.0				
Lane Util. Factor		1.00	1.00		1.00	1.00				
Frt		1.00	1.00		1.00	0.85				
Flt Protected		1.00	1.00		0.95	1.00				
Satd. Flow (prot)		1863	1863		1770	1583				
Fit Permitted		1.00	1.00		0.95	1.00				
Satd. Flow (perm)		1863	1863		1770	1583				
Volume (vph)	0	971	160	0	122	654				
Peak-hour factor, PHF (0.90	0.90	0.90	0.90	0.90	0.90				
Adj. Flow (vph)	0	1079	178	0	136	727				
RTOR Reduction (vph)	0	Ó	0	Ō	0	605				
Lane Group Flow (vph)	0	1079	178	0	136	122		,		
Turn Type						Perm				
Protected Phases		2	6		4					
Permitted Phases			-			4				
Actuated Green, G (s)		58.6	58.6		13.4	13.4				
Effective Green, g (s)		58.6	58.6		13.4	13.4				
Actuated g/C Ratio		0.73	0.73		0.17	0.17				
Clearance Time (s)		4.0	4.0		4.0	4.0				
Vehicle Extension (s)		3.0	3.0		3.0	3.0				
Lane Grp Cap (vph)		1365	1365		296	265				
V/s Ratio Prot		c0.58	0.10		0.08	200				
v/s Ratio Perm					0.00	c0.08				
v/c Ratio		0.79	0.13		0.46	0.46				
Uniform Delay, d1		6.8	3.2		30.0	30.0				
Progression Factor		1.00	0.14		1 00	1 00				
Incremental Delay, d2		4.7	0.2		11	1.00				
Delay (s)		11.5	0.6		31.2	31.3				
Level of Service		В	A		C	C				
Approach Delay (s)		11.5	0.6		313	Ŭ				
Approach LOS		В	A		C					
liniciastateliloini (Stulaniantatay)	55. 17	an a								
HCM Average Control Del	ay		18.7	H	ICM Le	vel of Ser	vice	B		anizara 201764.
HCM Volume to Capacity	ratio		0.73					-		
Actuated Cycle Length (s)			80.0	S	um of l	ost time (s)	8.0		
Intersection Capacity Utiliz	zation		64.5%	-	CU Leve	el of Serv	ice	 0		
Analysis Period (min)			15					~		
c Critical Lane Group										

ļ

	-	\rightarrow	<	-	-	~				
Viovennent		n (a) (a). Set (a) (b).	WM:	- Wibir	INBL.	NBR				
Lane Configurations	<u>۴</u>		٢	*	Ņ		2003-000-000-000-000-00-00-00-00-00-00-00	ada an	and the second secon	<u>- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19</u>
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Total Lost time (s)	4.0		4.0	4.0	4.0	1000				
Lane Util. Factor	1.00		1.00	1.00	1.00					
Frt	0.99		1.00	1.00	0.94					
Flt Protected	1.00		0.95	1.00	0.97					
Satd, Flow (prot)	1844		1770	1863	1708					
Fit Permitted	1.00		0.95	1.00	0.97					
Satd, Flow (perm)	1844		1770	1863	1708					
Volume (vph)	913	74	55	738	65	47				
Peak-hour factor PHF	0.90	0.90	0.90	0.90	0.90	0.90				
Adi, Flow (vpb)	1014	.82	61	820	72	52				
RTOR Reduction (vph)	2	<u> </u>	0	0_0	25	0				
I ane Group Flow (vph)	1094	Ū.	61	820	99	Ŏ				
Turn Type		<u>v</u>	Prot		0					
Protected Phases	4		3	Я	2					
Permitted Phases	-		Ū	U	4					
Actuated Green G (s)	69.7		55	79.2	10.9					
Effective Green a (s)	69.7		5.5	79.2	10.0					
Actuated g/C Ratio	0.71		0.06	0.81	0 11					
Clearance Time (s)	4.0		4.0	4.0	4 0					
Vehicle Extension (s)	3.0		3.0	3.0	3.0					
Lane Grn Can (voh)	1310		99	1504	190					
v/s Ratio Prot	c0 59		0.03	c0 44	60 06					
v/s Ratio Perm	00.00		9.00	00. į 1	00.00					
v/c Ratio	0.84		0.62	0 55	0.52					
Uniform Delay, d1	10.1		45.3	33	411					
Progression Factor	1.00		1.00	1.00	1.00					
Incremental Delay. d2	4.8		10.9	0.4	2.6					
Delay (s)	14.9		56.1	3.7	43.7					
Level of Service	В		E	A	D					
Approach Delay (s)	14.9		_	7.3	43.7					
Approach LOS	В			A	D					
lini (Einstersiolionni Stolmanna Einy)	an a	ing the second second	an bei s ja Selas s	al de decisiones de la companya de La companya de la comp	an a					
HCM Average Control E	Delay		13.4	ł	ICM Lev	vel of Service		B		
HCM Volume to Capaci	ty ratio		0.79							
Actuated Cycle Length ((s)		98.1	5	Sum of le	ost time (s)		12.0	I	
Intersection Capacity UI	tilization		65.7%	ŀ	CU Leve	el of Service		С		
Analysis Period (min)			15							
c Critical Lane Group										

Leona Quarry Fee Study 6: 73rd Avenue & MacArthur Boulevard

Cumulative With Mitigation PM 3/29/2006

	۶	->	\rightarrow	<pre>f</pre>	-		-	†	1	- \	ŧ	-
Movzehatehat					₩B	(WENE)	18181	NIS/IT		() () () () () () () () () () () () () (SB	
Lane Configurations	ሻሻ	Ť	7	ኘ	1			ፈጉ			∆ †	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0,95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	3433	1863	1583	1770	1848			3444			3508	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	3433	1863	1583	1770	1848			3444			3508	1583
Volume (vph)	213	747	227	39	534	31	148	431	68	90	413	221
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	237	830	252	43	593	34	164	479	76	100	459	246
RTOR Reduction (vph)	0	0	101	0	2	0	0	8	0	Ó	0	0
Lane Group Flow (vph)	237	830	151	43	625	0	0	711	0	0	559	246
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		3	8		· 2	2		.6	6	
Permitted Phases	1		4									Free
Actuated Green, G (s)	10.6	53.1	53.1	3.1	45.6			24.1			19.1	117.4
Effective Green, g (s)	10.6	53.1	53.1	3.1	45.6			25.1			20.1	117.4
Actuated g/C Ratio	0.09	0.45	0.45	0.03	0.39			0.21			0.17	1.00
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	310	843	716	47	718			736			601	1583
v/s Ratio Prot	c0.07	c0.45		0.02	0.34			c0.21			c0.16	
v/s Ratio Perm			0.10		·							0.16
v/c Ratio	0.76	0.98	0.21	0.91	0.87			0.97			0.93	0.16
Uniform Delay, d1	52.2	31.7	19.5	57.0	33.2			45.7			48.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	10.7	27.0	0.1	98.6	11.2			24.9			21.2	0.2
Delay (s)	62.9	58.7	19.6	155.6	44.4			70.6			69.1	0.2
Level of Service	E	E	В	F	D			Ε			Ε	А
Approach Delay (s)		52.0			51.5			70.6			48.1	
Approach LOS		D			D			Ē			D	
lance instead i local i Stuja e la atelicy de	an a		a san ana ana	en alada Alianana	la da			ander des jander Konstantigen	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
HCM Average Control D	Delay		54.8	Η	ICM Lev	el of Se	rvice		D			and a second second
HCM Volume to Capaci	ty ratio		0.97									
Actuated Cycle Length ((s)		117.4	S	um of lo	ost time	(s)		16.0			
Intersection Capacity U	tilization	1	88.4%	10	CU Leve	l of Ser	vice		Е			
Analysis Period (min)			15									

c Critical Lane Group

ł

ļ

i

ļ

Leona Quarry Fee Study 7: Keller Avenue & Mountain Boulevard

ļ

	۶		\mathbf{F}	₹	+	*	•	1	1	1	ţ	4
MtoManriani	- 18 3 1.			WW PO	WW/Bhr	W/BR	NBL	ANBIL.	[NE]:X	୍ଞାମ	(4) 67) (4) 67) (4) 67)	SBR
Lane Configurations		412			4	7		ፈው			सी	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Util. Factor		0.95			1.00	1.00		0.95			1.00	1.00
Frt		0.98			1.00	0.85		0.95			1.00	0.85
Flt Protected		1.00			1.00	1.00		0.99			0.97	1.00
Satd. Flow (prot)		3441			1858	1583		3319			1806	1583
Flt Permitted		0.90			0.95	1.00		0.89			0.58	1.00
Satd. Flow (perm)		3115			1766	1583		2966			1080	1583
Volume (vph)	54	449	93	14	241	219	114	325	251	47	28	137
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	60	499	103	16	268	243	127	361	279	52	31	152
RTOR Reduction (vph)	0	19	0	0	0	149	0	97	Ó	0	0	90
Lane Group Flow (vph)	0	643	¹ 0 ¹	0	284	94	0	670	0	0.	83	62
Turn Type	Perm			Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)		13.8			13.8	13.8		14.6			14.6	14.6
Effective Green, g (s)		14.8			14.8	14.8		15.6			15.6	15.6
Actuated g/C Ratio		0.39			0.39	0.39		0.41			0.41	0.41
Clearance Time (s)		5.0			5.0	5.0		5.0			5.0	5.0
Vehicle Extension (s)		3.0			3.0	3.0		3.0			3.0	3.0
Lane Grp Cap (vph) v/s Ratio Prot		1201			681	610		1205			439	643
v/s Ratio Perm		c0.21			0.16	0.06		c0.23			0.08	0.04
v/c Ratio		0.54			0.42	0.15		0.56			0.19	0.10
Uniform Delay, d1		9.1			8.6	7.7		8.7			7.3	7.0
Progression Factor		1.00			1.00	1.00		1.00			1.00	1.00
Incremental Delay, d2		0.5			0.4	0.1		0.6			0.2	0.1
Delay (s)		9.6			9.1	7.8		9.3	,		7.5	7.1
Level of Service		Α			A	А		А			A	Α
Approach Delay (s)		9.6			8.5			9.3			7.3	
Approach LOS		A			A			А			А	
httelisteritolal Stylininitality	i de projetionen Notationen	la de contra	land and a star of the second s	an an the the second			ginis Oproj Graniče II.		an a			
HCM Average Control E	Delay		9.0	ŀ	ICM Le	vel of S	ervice		А			
HCM Volume to Capaci	ty ratio		0.55									
Actuated Cycle Length	(s)		38.4	5	Sum of I	ost time	e (s)		8.0			
Intersection Capacity U	tilizatior	า	68.2%	1	CU Lev	el of Se	rvice		С			
Analysis Period (min)			15									
c Critical Lane Group												

r

Leona Quarry Fee Study 8: I-580 WB Off-Ramp & Mountain Boulevard

ļ

	≯	-	$\mathbf{\hat{z}}$	4	←	×.	1	Ť	1	1	ţ	~
Mlox/(=)nnt=)ntl	e Blu	- EBI)		- WWBIL	W/BNI	WBR	NEIL.	NIB)II		(0 P)	- SPII-	
Lane Configurations	٦	\$			\$			A		distant in the second state	*	
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0			4.0			4.0	
Lane Util. Factor	0.95	0.95			1.00			1.00			1.00	
Frt	1.00	0.99			0.89			1.00			1.00	
Flt Protected	0.95	0.95			0.99			1.00			1.00	
Satd. Flow (prot)	1681	1679			1642			1863			1863	
Fit Permitted	0.73	0.71			0.93			1.00			1.00	
Satd. Flow (perm)	1295	1241			1544			1863			1863	
Volume (vph)	435	0	8	6	0	29	0	234	0	0	129	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	483	0	9	7	0	32	0	260	0	0	143	0
RTOR Reduction (vph)	0	3	0	0	22	0	0	0	0	0	0	0
Lane Group Flow (vph)	242	247	0	0	17	0	0	260	0	0	143	0
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green, G (s)	10.2	10.2			10.2			13.7			13.7	
Effective Green, g (s)	10.2	10.2			10.2			13.7			13.7	
Actuated g/C Ratio	0.32	0.32			0.32			0.43			0.43	
Clearance Time (s)	4.0	4.0			4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	414	397			494			800			800	
v/s Ratio Prot								c0.14			0.08	
v/s Ratio Perm	0.19	c0.20			0.01							
v/c Ratio	0.58	0,62			0.03			0.32			0.18	
Uniform Delay, d1	9.1	9.2			7.5			6.0			5.6	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	2.1	3,0			0.0			0.2			0.1	
Delay (s)	11.2	12.2			7.5			6.3			5.7	
Level of Service	В	В			Α			А			А	
Approach Delay (s)		11.7			7.5			6.3			5.7	
Approach LOS		В			А			А			А	
lan (erasteren i lorni i Stelna) an eray.	i de contra a la contra da cont El contra da contra d	lega anta Anta atta ca					54. St. St. St.	çi i têre jîhên Li têre destêre	Constant States and States and States States and States		(⁹³) (1) (1) (1) (1)	
HCM Average Control D	elay		9.1		ICM Lev	el of Se	rvice		A		an a	Data and a short of the of
HCM Volume to Capacit	ty ratio		0.45									
Actuated Cycle Length (s)		31.9	S	um of k	ost time	(s)		8.0	·		
Intersection Capacity Ut	ilization	i	37.9%	10	CU Leve	l of Ser	vice		A			
Analysis Period (min)			15									

c Critical Lane Group

Leona Quarry Fee Study 9: Keller Avenue & I-580 EB Ramps

ļ

	≯		\rightarrow	1	4	•	-	1	1	1	4	4
Mowe inite init		- 1 2 811'		WAM BOL	With	- WWB)R	[8][2][_2	- NB	N EN EX		(SP)	() BBR
Lane Configurations		4Î		٦	<u></u>			an retue tert patient	ing ar 1955. Bland Annahl		ፋኑ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0						4.0	
Lane Util. Factor		1.00		1.00	1.00						0.95	
Frt		0.96		1.00	1.00						0.98	
Fit Protected		1.00		0.95	1.00						0.97	
Satd. Flow (prot)		1795		1770	1863						3365	
Flt Permitted		1.00		0.95	1.00						0.97	
Satd. Flow (perm)		1795		1770	1863						3365	
Volume (vph)	0	124	46	320	168	0	0	0	0	464	188	100
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	138	51	356	187	0	0	0	0	516	209	111
RTOR Reduction (vph)	0	17	0	0	0	0	0	0	0	0	15	0
Lane Group Flow (vph)	0	172	0	356	187	0	0	0	0	0	821	0
Turn Type				Prot						Split		
Protected Phases		2		1	6					4	4	
Permitted Phases												
Actuated Green, G (s)		11.2		16.7	31.9						19.5	
Effective Green, g (s)		11.2		16.7	31.9						19.5	
Actuated g/C Ratio		0.19		0.28	0.54						0.33	
Clearance Time (s)		4.0		4.0	4.0						4.0	
Vehicle Extension (s)		3.0		3.0	3.0						3.0	
Lane Grp Cap (vph)		338		498	1001						1105	
v/s Ratio Prot		ċ0.10		c0.20	0.10						c0.24	
v/s Ratio Perm												
v/c Ratio		0.51		0.71	0.1 9						0.88dl	
Uniform Delay, d1		21.6		19.2	7.1						17.7	
Progression Factor		1.00		1.00	1.00						1.00	
Incremental Delay, d2		1.2		4.8	0.1						2.7	
Delay (s)		22.8		24.0	7.2						20.5	
Level of Service		С		С	А						С	
Approach Delay (s)		22.8			18.2			0.0			20.5	
Approach LOS		С			В			А			С	
laiteastetõiltoin Siuläninneny	26.00	ersteren Gestaar				$\mathcal{T}_{\mathcal{A}}$	An an Ang Sa		5. A.S. 1977 - 1977		(the real visit)	
HCM Average Control D	elay		20.0	-	ICM Lev	/el of Se	ervice		В	I See Differen en 1963 Station	and a constraint inter-	
HCM Volume to Capacit	y ratio		0.68						_			
Actuated Cycle Length (s)		59.4	S	um of lo	ost time	(s)		12.0			
Intersection Capacity Ut	ilization	i	62.8%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

c Critical Lane Group

-

Leona Quarry Fee Study 16: Kuhnle Avenue & I-580 WB Off Ramp

i

1

ļ

	٨	-	\rightarrow	¥	-	•	-	1	1	- \	. ↓	-
Movennenii												
Lane Configurations	ኻሻ	*	an a		14	a y ad adder dat yes i d hairen wark die j	٢	<u></u>		ine, side the first described		al din <u>Start Alb</u>
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Lane Util. Factor	0.97	1.00			1.00		1.00	1.00			1.00	
Frt	1.00	1.00			0.94		1.00	0.96			0.87	
Fit Protected	0.95	1.00			1.00		0.95	1.00			1.00	
Satd. Flow (prot)	3433	1863			1753		1770	1779			1619	
FIt Permitted	0.95	1.00			1.00		0.71	1.00			0.99	
Satd. Flow (perm)	3433	1863			1753		1325	1779			1611	
Volume (vph)	519	41	0	0	24	19	314	44	19	3	0	60
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	577	46	0	0	27	21	349	49	21	3	0.00	67
RTOR Reduction (vph)	0	0	0	0	18	0	0	14	0	Õ	45	0
Lane Group Flow (vph)	577	46	0	. 0	30	0	349	56	0	Õ	25	õ
Turn Type	Prot						Perm			Perm		
Protected Phases	5	2			6			8			4	
Permitted Phases							8	-		4	•	
Actuated Green, G (s)	13.8	26.0			8.2		17.1	17.1			17.1	
Effective Green, g (s)	13.8	26.0			8.2		17.1	17.1	-		17.1	
Actuated g/C Ratio	0.27	0.51			0.16		0.33	0.33			0.33	
Clearance Time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)	927	948			281		443	595			539	
v/s Ratio Prot	c0.17	0.02			c0.02			0.03			000	
v/s Ratio Perm							c0.26				0.02	
v/c Ratio	0.62	0.05			0.11		0.79	0.09			0.05	
Uniform Delay, d1	16.4	6.3			18.3		15.4	11.7			11.5	
Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00	
Incremental Delay, d2	1.3	0.0			0.2		9.0	0.1			0.0	
Delay (s)	17.7	6.3			18.5		24.4	11.7			11.5	
Level of Service	В	Α			В		С	В			В	
Approach Delay (s)		16.8			18.5			22.2			11.5	
Approach LOS		В			В			С			В	
iniciation Students (V			an she an e	An the state of the	an an an an an an	C.Y. CHANGS			elester för soller Sollare för soller			in goal
HCM Average Control D)elav		18.5	::424		rel of Se	ervice	at the search of the second	R	Land Section 2.	uli bin analak	alaan in soo is
HCM Volume to Capacity ratio			0.59									
Actuated Cycle Length (51.1	S	um of le	ost time	(s)		12.0				
Intersection Capacity Ut		52.2%	ICU Level of Service					Α				
Analysis Period (min)			15									
c Critical Lane Group												
ļ

	۶	-	\mathbf{F}	¥	←	•	1	1	1	4	Ļ	~
Mexternitati		: HABH	(is [n] is) c [b] [c	\wnaii	- W/B1	WER	NEL	New	NBR		is (a)intro. (a)intro.	(S) (S) (S)
Lane Configurations		≜ ∱			4 ₽}			<u>.</u>		alaan oo shiin addadaadha	<u>ታ</u>	er sakaderidán. A
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	4 0
Lane Util. Factor		0.95			0.95			1.00			1.00	1.00
Frt		1.00			1.00			0.90			1.00	0.85
Flt Protected		1.00			1.00			0.99			0.97	1.00
Satd. Flow (prot)		3538			3536			1650			1805	1583
Flt Permitted		1.00			0.94			0.93			0.79	1.00
Satd. Flow (perm)		3538			3336			1560			1478	1583
Volume (vph)	0	590	2	5	301	0	5	0	18	203	117	598
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	656	2	6	334	0.	6	0	20	226	130	664
RTOR Reduction (vph)	0	0	0	0	0	0	0	10	Ó	0	0	109
Lane Group Flow (vph)	0	658	0	0	340	0	0	16	. 0	0	356	555
Turn Type				Perm			Perm			Perm		Perm
Protected Phases		2			6			8			4	
Permitted Phases				6			8			4		4
Actuated Green, G (s)		12.7			12.7			19.4			19.4	19.4
Effective Green, g (s)		12.7			12.7			19.4			19.4	19.4
Actuated g/C Ratio		0.32			0.32			0.48			0.48	0.48
Clearance Time (s)		4.0			4.0			4.0			4.0	4.0
Vehicle Extension (s)		3.0			3.0			3.0			3.0	3.0
Lane Grp Cap (vph)		1121			1057			755			715	766
v/s Ratio Prot		c0.19								1		
v/s Ratio Perm					0.10			0.01			0.24	c0.35
v/c Ratio		0.59			0.32			0.02			0.50	0.72
Uniform Delay, d1		11.5			10.4			5.4			7.0	8.2
Progression Factor		1.00			1.00			1.00			1.00	1.00
Incremental Delay, d2		0.8			0.2			0.0			0.5	3.4
Delay (s)		12.3			10.6			5.4			7.6	11.6
Level of Service		В			В			Α			Α	В
Approach Delay (s)		12.3			10.6			5.4			10.2	
Approach LOS		В			В			А			В	
lal (elisteratileini (Stelaninaterry)			a an						的情况有		和影响学	
HCM Average Control D	elay		10.9	H	CM Lev	el of Se	ervice		B			20120-2222-2120
HCM Volume to Capacity	y ratio		0.67									
Actuated Cycle Length (s	s)		40.1	S	um of lo	ost time	(s)		8.0			
Intersection Capacity Uti	lization		58.8%	10	CU Leve	l of Ser	vice		В			
Analysis Period (min)			15									

.

c Critical Lane Group

ł

APPENDIX E: PROJECT COST ESTIMATES

.

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTIONS 1, 2 LEONA QUARRY OAKLAND, CALIFORNIA

Unit Price Amount Quantity Unit ltem Description I-580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EASTBOUND OFF RAMP/ EDWARDS AVE **IMPROVEMENTS** Improvements \$55,638 1 LS \$55,638 1 Burckhalter Park driveway construction \$747,928 LS \$747,928 1 Interchange modification construction 2 \$803,566 TOTAL \$110,900 **DESIGN ENGINEERING** \$46,841 FEES PAID TO CITY \$961,300 TOTAL (rounded to nearest \$100)

<u>Note:</u>

1. Actual construction cost and design engineering cost provided by David Chapman, DeSilva Group.

2. Actual fees paid for inspection, permits, plan review, etc. provided by Marcel Uzegbu, City of Oakland.

P:\1020-00\I.580 Ramps.Edwards Estimate.xIsOn&Off Ramp-Edwardsge 1

13-Jul-06

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 4 LEONA QUARRY OAKLAND, CALIFORNIA

item	Description		Quantity	Unit	Unit Price	Amount
1	EDWARDS AVE./GREENLY DR. IMPROVEMENTS Improvements Construction	TOTAL	1	LS	\$77,605	\$77,605 \$77,605
		DESIGN ENGINEERING FEES PAID TO CITY				\$14,100 \$16,127
	TOTAL (r	ounded to nearest \$100)				\$107,800

<u>Note:</u>

1. Actual construction cost and design engineering cost provided by David Chapman, DeSilva Group.

2. Actual fees for inspection, permits, plan review, etc. provided by Marcel Uzegbu, City of Oakland.

P:\1020-00\Edwards.Greenly Estimate.xlsEdwards-Greenly Page 1

13-Jul-06

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 6

ļ

1

LEONA QUARRY

OAKLAND, CALIFORNIA

		_		Unit	
Item	Description	Quantity	Unit	Price	Amount
	73rd AVE./MacABTHUR BLVD./FOOTHILL BLVD				
	IMPROVEMENTS				
	Street Work				
1	Saw Cut	250	LF	\$5	\$1 250
2	AC/AB Pavement (6" AC/30" AB)	2,200	SF	\$35	\$77.000
3	Median Curb	220	LF	\$25	\$5,500
4	Miscellaneous Improvements/Utility Relocation	1	LS	\$11,300	\$11.300
5	Landscaping	1	LS	\$25,000	\$25,000
6	Water Meter (relocate)	1	EA	\$11,300	\$11,300
7	HC Ramps	3	EA	\$2,900	\$8,700
8	Signing/Striping	1	LS	\$25,000	\$25,000
9	Remove curb and gutter	220	LF	\$20	\$4,400
10	Remove tree	6	EA	\$900	\$5,400
	Subtotal				\$174 850
					* · · · 122
	Signalization				
11	Modify Traffic Signal	1	LS	\$135,600	\$135,600
12	Interconnect	600	LF	\$25	\$15,000
	Subtotal				\$150,600
	TOTAL				\$325,450

16-Feb-06

CITY OF OAKLAND PUBLIC WORKS AGENCY / ENGINEERING DESIGN AND RIGHT-OF-WAY MANAGEMENT PRELIMINARY PROJECT ESTIMATE Project: 73rd/MacArthur Blvd/Foothill Blvd #6 Estimate by: M. Lizegbu

Project:	/3rd/MacArtnur	Bivd/Foothill Bivd #6	Estimate by:	M. Uzegbu
Project No.:	P27710		Checked by:	5/4/2006
				i
	S.	ESTIMATED CONSTRUCTION COST		\$ 325,450
	ISC	Contingency	25.0%	\$ 81,363
	STI	Inspection	9.0%	\$ 29,291
	NO	Construction Services (Survey and Testing)	2.0%	\$ 6,509
	ŏŬ	ាល់ជាអីវែល ចោមនាជា លើដំណីចម្រូវលោស៊ាន	36.0%	\$P\$ 学校的故事
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 13,278
		Environmental studies	3.0%	\$ 13,278
	DSG	Design/Engineering	15.0%	\$ 66,392
		Constructibility Plan Review Cost	5.0%	\$ 22,131
		TOTAL DESIGN COST	26.0%	\$
				·····································
		men in orden in en in oor in one of order in strand in men devel strand strand strand strand in the second strand stra		Linear a secondaria (Construction (Construction))
	2.	ADMINISTRATION		
	S S			
	STF	Project Management (Administration, bidding etc)	8.0%	\$ 35,409
	NIN CO	Printing/Duplication/Advertising/Postage	0.5%	\$ 2,213
	DMI E	Other Agencies Permit (PGE power)	0.5%	\$ 2,213
	AI	Contract Compliance	3.0%	\$ 13.278
		TiteDitZevI, ZevatSellevIte for a second states	()??)() %;	as internet
	<i>с</i> о			
	AL	SUB TOTAL PROJECT COST		\$ 610,805
	01	Project Contingency	10.0%	\$ 11.508
		TOTAL PROJECT COST:		\$ 622.312
		AND A CONTRACTOR OF AND	- 《本地》是中国大学品牌的"学校》	··· Warning the state of the Cy U I Z

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 7 LEONA QUARRY

OAKLAND, CALIFORNIA

Item	Description		Quantity	Unit	Unit Price	Amount
						<u></u>
	MOUNTAIN BLVD./KELLER AVE.					
	IMPROVEMENTS					
	Improvements					
1	Miscellaneous Improvements/Utility Relocation		1	LS	\$11,300	\$11,300
2	Signing/Striping		1.	LS	\$21,000	\$21,000
3	HC Ramps		4	EA	\$2,900	\$11,600
		Subtotal				\$43,900
	Signalization					
4	Traffic Signal		2	LS	\$180,800	\$361,600
5	Interconnect		1,000	LF	\$25	\$25,000
		Subtotal				\$386,600
		TOTAL				\$430,500

ł

l

ļ

06-Jan-06

CITY OF OAKLAND PUBLIC WORKS AGENCY / ENGINEERING DESIGN AND RIGHT-OF-WAY MANAGEMENT						
		PRELIMINARY PROJECT ESTIMATE				
Project:	Mountain Blvd/Ke	eller Avenue #7	Estimate by:	M. Uzegbu		
			Date Estimated	5/4/2006		
Project No.:	P27710		Checked by:			
		New Andrew State of the	A to be also be and the second			
	TS TS	ESTIMATED CONSTRUCTION COST	11、1、2013年7月1日(11)	\$ 430,500		
	RU OS	Contingency	25.0%	\$ 107,625		
	ST C	Inspection	9.0%	\$ 38,745		
	NO NO	Construction Services (Survey and Testing)	2.0%	\$ 8,610		
		16021344,60018423692964646474639453453	36.0%			
				· · · · · · · · · · · · · · · · · · ·		
		DESIGN COST				
		Engineering studies(traffic studies)	3.0%	\$ 17,564		
		Environmental studies	3.0%	\$ 17,564		
	DSG	Design/Engineering	15.0%	\$ 87,822		
		Constructibility Plan Review Cost	5.0%	\$ 29,274		
		TOTAL DESIGN COST	26.0%	\$		
	2	ADMINISTRATION	· · · · · · · · · · · · · · · · · · ·			
	TRAT	Project Management (Administration, bidding etc.)	8.0%	\$ 46.838		
	SIN	Printing/Duplication/Advertising/Postage	0.5%	\$ 2,927		
	Ш <u>м</u>	Other Agencies Permit9eg, PGE power)	0.5%	\$ 2,927		
	AD	Contract Compliance	3.0%	\$ 17,564		
		TROATERT AND MATSHILLY AND AND CONTRACT	139.00%			
				Contraction of the second s		
		SUB TOTAL PROJECT COST		\$ 807,962		
		Project Contingency	10.0%	\$ 15,222		
		MARSH TOTAL PROJECT COST:	The Assessed	\$ 823,185		

.

1

1

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 8 LEONA QUARRY OAKLAND, CALIFORNIA

16-Feb-06

ļ

Item	Description	Quantity	Unit	Unit Price	Amount
	I-580 WESTBOUND OFF-RAMP/MOUNTAIN BLVD. IMPROVEMENTS				
	Improvements				
1	Construction	1	LS	\$212,385	\$212,385
	TOTAL	-			\$212,385

Note:

1. Actual construction cost (based on bids received) provided by David Chapman, DeSilva Group.

P:\1020-00\Base Estimates from HQE.xlsWB OffRamp-Mountain Page 1

Project: I-580	Westbound	PRELIMINARY PROJECT ESTIMATE		
		off-ramp/Mountain Blvd/Shone # 8	Estimate by:	M. Uzegbu
Project No.: P277	10		Checked by:	5/4/2006
	CTI IS	ESTIMATED CONSTRUCTION COST		\$ 212,385
	RU(Contingency	25.0%	\$ 53,096
	ST	Inspection	9.0%	\$ 19,115
	NON	Construction Services (Survey and Testing)	3.0%	\$ 6,372
	0 -		37.0%	(aternation)
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 8,729
		Environmental studies	3.0%	\$ 8,729
	DSG	Design/Engineering	15.0%	\$ 43,645
		Constructibility Plan Review Cost	5.0%	\$ 14,548
		TOTAL DESIGN COST	26.0%	\$ 75,652
	2	ADMINISTRATION		
	STRAT	Project Management (Administration, bidding etc)	8.0%	\$. 23,277
•	SIN CO	Printing/Duplication/Advertising/Postage	0.5%	\$ 1,455
	Β	Other Agencies Permit eg. PGE Power)	0.5%	\$ 1,455
	A	Contract Compliance	3.0%	\$ 8,729
		TRODEN, AND METISTICK AND ACTORS AND	112.09%	6 89,000
		SUB TOTAL PROJECT COST		\$
		Project Contingency	10.0%	\$ 7,565
		TOTAL PROJECT COST:	(1)下。在第二十年的	\$ 409,100

I

i

4

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 9 LEONA QUARRY

OAKLAND, CALIFORNIA

ltom	Description		Quantity	Unit	Unit	A
	Description		Quantity		Price	Amount
	I-580 EASTBOUND OFF-RAMP/KELLER AVE.					
	IMPROVEMENTS					
	Improvements					
1	Miscellaneous Improvements/Utility Relocation		1	LS	\$11,300	\$11,300
2	HC Ramps		4	EA	\$2,900	\$11,600
3	Signing/Striping		1	LS	\$13,000	\$13,000
		Subtotal				\$35,900
	Signalization					
4	Traffic Signal		1	LS	\$180,800	\$180,800
		Subtotal				\$180,800
		TOTAL				\$216.700

1

16-Feb-06

CITY OF OAK		WORKS AGENCY / ENGINEERING DESIGN AN	ID RIGHT-OF-W	AY MANAGEMENT
		PRELIMINARY PROJECT ESTIMATE		
Project:	Eastbound Off-Ra	amp/Keller Avenue # 9	Estimate by:	M. Uzegbu
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
	Εø	ESTIMATED CONSTRUCTION COST		\$<216.700
	ST	Contingency	25.0%	\$ 54,175
	STF	Inspection	9.0%	\$ 19.503
	SNC	Construction Services (Survey and Testing)	2.0%	\$ 4.334
	o o		36.0%	(2)41.7%[en]
		DESIGN COST		
	`	Engineering studies(traffic studies)	3.0%	\$ 8,841
		Environmental studies	3.0%	\$ 8,841
	DSG	Design/Engineering	15.0%	\$ 44,207
		Constructibility Plan Review Cost	5.0%	\$ 14,736
		TOTAL DESIGN COST	26.0%	\$ 76,625
	2	ADMINISTRATION		
	TRA'	Project Management (Administration, bidding etc.)	7.0%	\$ 20.630
		Printing/Duplication/Advertising/Postage	0.5%	\$ 1.474
	M M	Other Agencies Permit(PGE power etc)	0.5%	\$ 1.474
	Αſ	Contract Compliance	3.0%	\$ 8.841
		ntonj/AU, ANDEMINI SUPPANJIKY: (* 1008)j(3	111.0y%.	32618
	ر س			2011
	AL	SUB TOTAL PROJECT COST		\$ 403,755
	10	Project Contingency	10.0%	\$ 7,663
		TOTAL PROJECT COST:	E. F. A. S. Contractor	\$ 411,418
	1			

Ì

÷

.

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 16 LEONA QUARRY

OAKLAND, CALIFORNIA

Unit Unit Price Amount Quantity Description Item 1-580 WESTBOUND OFF-RAMP/KUHNLE AVE./MOUNTAIN BLVD. **IMPROVEMENTS** Street Work \$1,500 300 LF \$5 Saw Cut 1 \$42,000 SF \$35 1,200 AC/AB (6" AC/30" AB) 2 \$6,300 \$21 300 LF 3 Curb and Gutter \$116,700 LS \$116,700 Miscellaneous Improvements/Utility Relocation 1 4 \$11,600 \$2,900 4 EA 5 HC Ramps \$22,000 \$22,000 1 LS 8 Signing/Striping \$200,100 Subtotal Signalization \$180,800 1 LS \$180,800 7 Traffic Signal \$15,000 \$25 600 LF Interconnect 8 \$195,800 Subtotal \$395,900 TOTAL

17-Jan-06

CITY OF OAH	KLAND PUBLIC	WORKS AGENCY / ENGINEERING DESIGN AN PRELIMINARY PROJECT ESTIMATE	ID RIGHT-OF-W	AY MANAGEMENT
Project:	I.580 Westbound	off.ramp/Kunle Avenue/Mountain Blvd #16	Estimate by: Date Estimated	M. Uzegbu 5/4/2006
Project No.:	P27710		Checked by:	
	it s	ESTIMATED CONSTRUCTION COST		\$ 395,900
	3UC	Contingency	25.0%	\$ 98,975
	STF CO	Inspection	9.0%	\$ 35,631
	NO	Construction Services (Survey and Testing)	2.0%	\$ 7,918
	8 D	માંભમાં છે. હાભાગમાં આવેલા છે.	36.0%	
	1	DESIGN COST		·······
		Engineering studies(traffic studies)	3.0%	\$ 16.153
		Environmental studies	3.0%	\$ 16,153
	DSG	Design/Engineering	15.0%	\$ 80,764
		Constructibility Plan Review Cost	5.0%	\$ 26,921
		TOTAL DESIGN COST	26.0%	\$ 139,990
		ADMINISTRATION		
	TRA STS	Project Management (Administration, bidding etc.)	8.0%	\$ 43.074
	SIN CO	Printing/Duplication/Advertising/Postage	0.5%	\$ 2.692
	E MI	Other Agencies Permit	0.5%	\$ 2,692
	AL	Contract Compliance	3.0%	\$ 16.153
		HOUZAL AVULAINISIILAAVULAI (COSIIIS)	12.0%	(5) (5)(1)(1)
				* \$ x 1.8%***** 7 49.095
			10.0%	to coo
		TOTAL PROJECT COST	10.0%	φ 13,999 \$ 577 በ24
	-		C ACRONY BURE OF LODIER A	i vinde and and in the substant .

.

1

I

!

. .

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 18 LEONA QUARRY

i

1

OAKLAND, CALIFORNIA

Unit Unit Price Amount Quantity Description ltem 1-580 EASTBOUND OFF-RAMP/SEMINARY AVE./OVERDALE AVE. **IMPROVEMENTS** Street Work \$11,300 LŞ \$11,300 1 Miscellaneous Improvements/Utility Relocation \$15,000 \$15,000 ٦ LS Signing/Striping 2 \$26,300 Subtotal Signalization \$180,800 \$180,800 t LS Traffic Signal З LŞ \$11,300 \$11,300 1 Interconnect 4 \$192,100 Subtotal \$218,400 TOTAL

06-Jan-06

CITY OF OAK		WORKS AGENCY / ENGINEERING DESIGN AN PRELIMINARY PROJECT ESTIMATE	ID RIGHT-OF-W	AY MANAGEMENT
Project:	1.580 eastbound o	off.ramp/Seminary Avenue/Overdale Ave #18	Estimate by: Date Estimated	M. Uzegbu 5/4/2006
Project No.:	P27710		Checked by:	
	L S	ESTIMATED CONSTRUCTION COST		\$ 218,400
	auc SST	Contingency	25.0%	\$ 54,600
	STF	Inspection	9.0%	\$ 19,656
	NON	Construction Services (Survey and Testing)	2.0%	\$ 4,368
	ŏŬ	าหอมมักปี (ตามุมีเริ่ม)สมบัติแต่อนกับตามัก	36.0%	(c) (d) (f)
,				
		DESIGN COST		
		Engineering studies(traffic studies)	3.0%	\$ 8911
		Environmental studies	3.0%	\$ 8,911
	DSG	Design/Engineering	15.0%	\$ 44,554
		Constructibility Plan Review Cost	5.0%	\$ 14.851
		TOTAL DESIGN COST	26.0%	\$ 77,226
	2	ADMINISTRATION		
	TRA1 STS	Project Management (administration bidding at)	9.00/	¢ 00.700
	Si si	Printing/Duplication/Advertising/Postage	0.076	⊅ ∠3,762 € 1.495
	MIN	Other Agencies Permit (PGE power)	0.5%	φ 1,485 ¢ 1,485
	AD	Contract Compliance	3.0%	¢ 1,405
		TIOTIZAVI, ANDINI INTESTI RAVINATI CONSTRA	12.0%	φ 0,911 (3) (3)(3)
				(1, col. (1, col. (1, c), (1, c))
		SUB TOTAL PROJECT COST		\$ 409,893
		Project Contingency	10.0%	\$ 7,723
		TOTAL PROJECT COST:		\$ 417,616

į

i

T

1

i

1

I

ļ ļ.

. . .

1 1 ١ L I

.

.