CITY OF OAKLAND

AGENDA REPORT

2031 37 FM 5: 28

TO:

Office of the City Administrator

ATTN:

Deborah A. Edgerly

FROM:

Community & Economic Development Agency

DATE:

December 12, 2006

RE:

A Report and Public Hearing on: An Ordinance Amending The Oakland Municipal Code Title 10, Adding Chapter 70, Establishing A Traffic Impact Program (TIP) Pursuant To California Government Code Sections 66000 Through 66025 (Mitigation Fee Act) For The Southeast Portion Of The City Of Oakland, Including Procedural Requirements For The Adoption, Imposition,

And Adjustment Of Traffic Impact Fees (TIF); and

A Resolution Establishing A Traffic Impact Fee (TIF) Pursuant To Adoption

And Implementation Of The Traffic Impact Program (TIP) For the

Southeastern Section of the City Of Oakland, Including The Adoption And Imposition Of Traffic Impact Fees (TIF) And Designated Projects For FY 2007-

09

SUMMARY

Development projects, whether new or in-fill, increase the demand on existing traffic and transportation infrastructure. This impact is exacerbated in urban areas, due to the aging of the transportation infrastructure or simply because the current infrastructure was designed for much lower population densities and lower utility rates. The proposed Traffic Impact Fee (TIF) and Traffic Impact Program (TIP) will constitute a funding mechanism for traffic improvements required to mitigate cumulative traffic impacts in the Southeast Oakland area. Pursuant to the Mitigation Fee Act, local jurisdictions in California have the authority to establish a mitigation impact fee in connection with the approval of development projects. The purpose of such impact fees is to defray all or a portion of the costs of public facilities related to the development project in order to maintain an adequate level of service standards for public facilities. Currently, the City of Oakland does not have any infrastructure related impacts fees. In addition, the condition of approval and the settlement agreement for the Leona Quarry develop project requires the adoption and implementation of a TIP and TIF. The TIP (attached ordinance) establishes the guidelines and administrative structure of imposing the TIF (attached resolution). The amount and individual projects listed under the TIF will be adjusted from time to time to account for changing economic conditions and/or actual number of development projects in the study area. Affordable housing units or development projects that do not include a change in use or increased density are exempt from paying any TIF. Staff is requesting the City Council to approve the establishment of a Traffic Impact Program, and to approve the Traffic Impact Fee for FY 2007-2009.

FISCAL IMPACT

The adoption and implementation of the Traffic Impact Program and Traffic Impact Fee will generate new revenues for construction of traffic and transportation related capital projects. Specifically, the proposed FY 2007-09 TIF is designated to generate \$4,859,700 (see Table 3). This amount is derived based on the proposed individual impact fee unit costs listed below in Table 1.

TABLE 1 PRELIMINARY SOUTHEAST OAKLAND TIF AND TIP FEE CALCULATIONS			
Land Use Category	Fee/Unit		
Single-Family Residential	\$3,160/Unit		
Other Residential	\$2,440/Unit		
Retail	\$5.89/Square Foot		
Service	\$3.12/Square Foot		
Manufacturing	\$1.44/Square Foot		
Source: Fehr & Peers, 2006.			

The amount of the TIF can and will be modified in the future, pursuant to requirements of the Mitigation Fee Act. Modifications to the TIF can be based on adjustments in the amount of the estimated design and/or construction costs of providing the specified public facilities based upon adjustments in accordance with the Inflation Index. The exact amount of future year TIFs is unknown at this time and will depend on the amount and impact(s) of future development projects in the TIP area.

BACKGROUND

Pursuant to the Mitigation Fee Act, California Government Code Section 66000, et seq. (also known as AB 1600), a local agency is authorized to charge a fee to development applicants in connection with approval of a development project for the purpose of defraying all or a portion of the costs of public facilities related to the development project. The current proposed TIP will fund capital improvements, through a fee program, to mitigate the traffic impacts of new development. AB 1600 requires that mitigation fee programs comply with certain requirements, including:

- a. Identifying the purpose of the fee;
- b. Identifying how the fee will be used and the facilities to be funded through the fee;
- c. Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed;
- d. Determining a reasonable relationship between the need for the public facility and the type of development on which the fee is imposed; and
- e. Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development

Based on the requirements and statutory guidelines of AB 1600, TIPs are commonly collected in many jurisdictions in the Bay Area and throughout California to aid in financing transportation infrastructure required by new development. Currently, the City of Oakland does not collect transportation-related impact fees for new developments; although the City does charge an impact fee for other purposes, such as affordable housing. For comparative analysis, information about what other cities in the Bay Area assess against specific housing units are listed in tables 2A (Total Impact Fees) and 2B (Transportation Impact Fees only).

TABLE 2A					
TOTAL IMPACT FEES ¹					
City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ² (per ksf)	Restaurant ² (per ksf)	Retail ² (per ksf)
Alameda	\$3,229	\$2,644	\$3,378	\$3,485	\$3,485
Berkeley	\$4,695	\$1,947	\$12,253	\$48,910	\$63,541
Concord	\$27,323	\$26,823	\$6,754	\$8,234	\$8,234
Emeryville	\$7,239	\$2,643	\$5,370	\$8,624	\$6,923
Fremont	\$25,049	\$16,938	\$5,975	\$7,732	\$5,903
Sacramento	\$6,505	\$4,934	\$3,148	\$1,033	\$1,033
San Francisco	\$23,270	\$23,270	\$22,000	\$10,000	\$12,000
San Jose	\$26,716	\$24,090	\$14,246	\$3,806	\$3,806
Average	\$15,503	\$12,911	\$9,140	\$11,478	\$13,116
Minimum	\$3,229	\$1,947	\$3,148	\$1,033	\$1,033
Maximum	\$27,323	\$26,823	\$22,000	\$48,910	\$63,541

Notes:1) Total impact fee includes transportation impact fee and other development fees for parks, affordable housing, child care, sewer, drainage, fire, public facilities, etc. (building permit and plan check fees are excluded, as are fees collected by school districts or other outside agencies). 2) Calculation based on gross floor area.

Source: Fehr & Peers and HQE, Inc, March 2006.

	TABLE 2A					
	TRANSPORTATION IMPACT FEES					
City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ¹ (per ksf)	Restaurant ¹ (per ksf)	Retail ¹ (per ksf)	
Alameda ²	\$1,128	\$866	\$3,040	\$3,140	\$3,140	
Berkeley	\$4,695	\$1,947	\$7,253	\$43,910	\$58,541	
Concord	\$2,588	\$2,088	\$5,920	\$7,400	\$7,400	
Emeryville	\$1,976	\$1,384	\$1,970	\$5,224	\$3,523	
Fremont	\$2,513	\$1,949	\$5,000	\$6,360	\$5,000	
Sacramento	\$380	\$316	\$318	\$600	\$600	
San Francisco	-	-	\$10,000	\$10,000	\$10,000	
San Jose	\$6,994	\$5,596	\$10,440	-	-	
Average	\$2,534	\$1,768	\$5,493	\$9,579	\$11,026	
Minimum	\$380	\$316	\$318	\$600	\$600	
Maximum	\$6,994	\$5,596	\$10,440	\$43,910	\$58,541	

Notes:

- 1. Calculation based on gross floor area.
- 2. City of Alameda Transportation Fee estimated based on discussion with city staff.

Source: Fehr & Peers and HQE, Inc, March 2006.

The purpose of the proposed fee for Oakland is to maintain adequate level of service standards on our street and public thru-ways. The fee is not imposed to improve or correct deficiencies in baseline service levels, or to mitigate the impacts of regional (through) traffic. The TIF and TIP will constitute a funding mechanism for traffic improvements required to mitigate cumulative traffic impacts in the Southeast Oakland area, as documented in the Leona Quarry Environmental Impact Report. Development of a TIF and TIP is required as part of the Conditions of Approval (Condition #26) for the Leona Quarry project, and is also addressed in the Leona Quarry Settlement Agreement executed in December 2003 (Resolution No. 78359) approving the application of the DeSilva Group to close the Leona Quarry, and reclaim it and redevelop the site for 477 residential units at 7100 Mountain Boulevard in compliance with Alameda Superior Court order (Action No. RG-03077607).

TRAFFIC IMPACT PROGRAM & FEE STUDY AREA

The study area is located in Southeast Oakland and is shown on Figure 1. The area generally extends along both sides of the I-580 freeway corridor between the Seminary Avenue and the 98th Avenue interchanges. A more detailed map of the geographic area included in the Southeast Oakland TIF and TIP is provided in Appendix B of the technical study attached to the proposed resolution as Exhibit A.

PROGRAM DESCRIPTION

Pursuant to the requirements of the AB 1600 (Mitigation Fee Act), the description, purpose and nexus of the Southeast Oakland Traffic Impact Program and Fee are:

A) Purpose Of The Fee

The purpose of the Southeast Oakland TIF and TIP is to mitigate the traffic impacts of new development projects within the study area by developing an overall transportation system that will accommodate the expected future traffic demand. Specifically, there are a number of intersections where traffic operations are expected to deteriorate with the addition of traffic from new development in the study area. Table 3 of the attached technical study provides the traffic operations analysis results for these intersections and identifies the operational problems that are expected to occur if mitigation measures are not implemented. The TIF program is designed to fund the necessary mitigation measures and ensure that traffic operations at the affected intersections remain within City standards.

B) How the Fee Will Be Used And The Facilities To Be Funded Through The Fee

Revenues from the Southeast Oakland TIF and TIP will be used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. The revenues will be deposited in a separate fund for this specific program in order not to dilute the dollars generated through the TIF program with other city programs. The projects funded by the TIF may include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area. Table 2 of the attached technical study describes all of the capital improvement projects to be funded through the fee program, and Table 3 of this report summarizes the costs of those improvements. The TIF and TIP will be administered by the City of Oakland's Community and Economic Development Agency. The actual projects may be constructed either by the City (through the Public Works Agency) or private entities (such as private developers).

The Southeast Oakland TIF and TIP is intended to assess the cost-sharing responsibilities for capital roadway improvements identified in the Leona Quarry EIR and in the Conditions of Approval for the Leona Quarry project. As specified in these documents and in the Leona Quarry Settlement Agreement, the following improvements will be included in the Southeast Oakland TIF and TIP:

TABLE 3 COST ESTIMATES FOR SOUTHEAST OAKLAND TIF/TIP IMPROVEMENTS		
Location	Cost Estimate	
1 and 2. I-580 WB On-Ramp/Edwards Avenue and	\$961,300	
I-580 EB Off-Ramp/Edwards Avenue 4. Greenly Drive/Edwards Avenue	\$107,800	
6. MacArthur Boulevard/73 rd Avenue	\$622,300	
7. Mountain Boulevard/Keller Avenue	\$823,200	
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	\$409,100	
9. I-580 EB Off-Ramp/Keller Avenue	\$411,400	
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	\$757,000	
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	\$417,600	
A. Study of Edwards Avenue and Seminary Avenue operational improvements	\$350,000	
Total Cost of Improvements	\$4,859,700	

The locations of these TIF and TIP projects are shown in Figure 1. The nexus analysis presented in the subsequent sections, and the attached technical study, calculates fees that can be collected to support improvements at these locations

C) Determination Of A Reasonable Relationship Between The Fee's Use And The Type Of Development On Which The Fee Is Imposed

Different types of development generate traffic with different characteristics. The nexus analysis presented in this report accounts for the differential impact on the local street system caused by different development types. Tables 5, 6 and 7 of the attached technical study describe the amount of new development of different types expected in the Southeast Oakland area over the next 20 years, including residential, retail, and professional/service uses. The traffic generated by these new uses will have negative impacts on the nine intersections described in Table 3 above. The proposed fee levels are set such that each development type pays a fee that reflects its share of traffic impacts to the local transportation system. The fees for specified development units are listed in Table 1.

D) Determination Of A Reasonable Relationship Between The Need For The Public Facility And The Type Of Development On Which The Fee Is Imposed

The need for the capital improvements listed in Table 3 of the attached technical study was established in the Leona Quarry EIR. This report confirms that the mitigation measures identified in that EIR would adequately address the expected traffic operations issues (through the analysis described in Chapter 4, Step 1 of the attached technical study) by determining that implementation of the improvements would return the traffic operations at the nine affected intersections to within City standards. Table 1 of the attached technical study shows there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for improvements at these locations is attributable to traffic generated by new development. As described above, the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

E) Determination Of A Reasonable Relationship Between The Amount Of The Fee And The Cost Of The Public Facility (Or Portion Of Facility) Attributable To New Development

The nine intersections included in this study currently operate within the City's standards, indicating that there are no existing deficiencies at the improvement locations included in the TIF program. Furthermore, the analysis presented in Table 3 of the attached technical study shows that traffic generated by the new development expected in the Southeast Oakland TIF program area will cause operational deficiencies at the study locations; those deficiencies are mitigated by the identified capital improvement projects. Thus, the TIF program is targeted toward the public improvements necessary to accommodate the traffic generated by new development within the program area.

The cost estimates for the capital improvement projects have been carefully developed and reviewed to ensure that all reasonably anticipated cost elements have been taken into account for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs are then distributed among the different development projects (on a per unit basis) in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category.

SUSTAINABLE OPPORTUNITIES

<u>Economic</u>: The TIP/TIF will allow the City to generate additional revenues along with an efficient cost allocation for providing traffic and transportation related facilities based on the degree of impact from new development related projects.

<u>Environmental</u>: Improved traffic flow will reduce the amount of Carbon Monoxide and particulate matter in the air.

<u>Social Equity</u>: The TIP/TIF will allow for an equitable and proportional program to fund traffic and transportation related facilities serving all populations in Oakland.

DISABILITY AND SENIOR CITIZEN ACCESS

The TIP/TIF will generate resources for the City to better manage and mitigate the impact of development projects on the City's traffic and transportation infrastructure. These resources will enhance the ability of service providers to offer transportation services to disabled and/or senior citizens.

RECOMMENDATION(S) AND RATIONALE

The pace and intensity of development projects in urban areas negatively impact the quality of traffic and transportation infrastructure facilities. Such traffic and transportation infrastructure are either aging or were designed to provide a lower level of service use and lower population densities. The proposed TIP/TIF will provide the city with additional resources to defray all or a portion of the costs of traffic and transportation facilities in order to maintain adequate level of service standards on our streets in the Southeastern portion of the City. The proposed TIP/TIF allows for a fair and efficient system of imposing and collecting fees due to the fact the share of each development projects impact fees are proportional to its impact. Many jurisdictions in the Bay Area collect a traffic impact fee; however, the City of Oakland does not.

The analysis required for establishing an impact fee (pursuant to the Mitigations Fee Act) has resulted in a traffic impact fee that, given the overall budget for development projects, constitutes a very small portion of development costs. However, the collection and pooling of these revenues, based on the actual impacts of a given development projects, allows the City to provide additional traffic and transportation infrastructures to meet the increased demand and population densities as the result of additional development project. Finally, the adoption and implementation of the TIP and TIF is a required part of the conditions of approval adopted for the Leona Quarry project, as approved by the City Council, along with the settlement agreement executed for said project.

ACTION REQUESTED OF THE CITY COUNCIL

Staff requests that the Council (a) approve and adopt the ordinance establishing the Traffic Impact Program and (b) approve the resolution establishing the current Traffic Impact Fees and projects for FY 2007-09.

Respectfully submitted,

Claudia Cappio

Development Director

Community & Economic Development Agency

Prepared by:

Maziar Movassaghi

Community & Economic Development Agency

APPROVED AND FORWARDED TO THE CED COMMITTEE:

Office of the City Administrator

Attachments:

Figure 1: Traffic Impact Program Study Area and Location of Proposed Projects for FY 2007-2009.

APPROVED	AS TO	FORM AND	LEGALITY
ALLINO Y 6.12	\sim	TORIN AND	

OAKLAND CITY COUNCIL ORDINANCE NO. DRAFT.M.S.

AN ORDINANCE AMENDING THE OAKLAND MUNICIPAL CODE TITLE 10, ADDING CHAPTER 70, ESTABLISHING A TRAFFIC IMPACT PROGRAM (TIP) PURSUANT TO CALIFORNIA GOVERNMENT CODE SECTIONS 66000 THROUGH 66025 (MITIGATION FEE ACT) FOR THE SOUTHEAST PORTION OF THE CITY OF OAKLAND, INCLUDING PROCEDURAL REQUIREMENTS FOR THE ADOPTION, IMPOSITION, AND ADJUSTMENT OF TRAFFIC IMPACT FEES (TIF)

WHEREAS, the City of Oakland anticipates that development will continue to occur within its boundary, and as growth occurs, additional demands will be placed upon the City's existing traffic infrastructure, including but not limited to streets, traffic signals, and other public right-ofway facilities; and

WHEREAS, the City's General Plan identifies methods of mitigating the impacts of development, including in-fill projects, in order to ensure that development does not create an unnecessary burden on the City's limited financial resources; and

WHEREAS, the State of California, Government Code Sections 66000 et seq. (Mitigation Impact Fee) and Government Code Section 65000 et seq. (Planning and Zoning Law of the State of California) identify procedures for establishing and imposing development related impacts fees; and

WHEREAS, the City of Oakland has not established nor implemented any development related impact fee focusing on impacts, mitigations, or improvements to the City's traffic and transportation infrastructure; and

WHEREAS, if additional public transportation infrastructure is not expanded, modified, or improved as new development occurs, the existing transportation infrastructure will not be adequate to serve the citizens of the City at the level of service currently provided; and

WHEREAS, unless the City imposes fees, charges, and exactions on new development for the construction and financing of public transportation infrastructure and facilities, the City will not have adequate sources of revenue to finance the construction of said facilities; and

WHEREAS, the transportation and traffic related projects to be constructed by fees generated by this ordinance will result in a benefit to the new development, since the proposed development could not be otherwise be built, and without the fees and charges generated by this ordinance, the City would be unable to provide the public facilities requires to serve the new development; and

WHEREAS, condition of approval No. 26 and the Settlement Agreement of the Leona Quarry development project, as outlined in Resolution No. 78358 C.M.S. [Resolution approving the application of the DeSilva Group to close the Leona Quarry and reclaim it and redevelop the site for 477 residential units at 7100 Mountain Boulevard in compliance with Alameda Superior Court order (Action No. RG-03077607)] requires the establishment of a Traffic Impact Fee and Traffic Impact Program; and

WHEREAS, pursuant to the California Environmental Quality Act (CEQA) on February 17, 2004, by Resolution 78359, the City certified an Environmental Impact Report (EIR) which adequately analyzed the impacts of the improvements contemplated by this Ordinance, including the creation of fee programs to require new development in the Southeast area of Oakland to fund their proportional fair share of the cost of acquiring and improving public facilities, including traffic and transportation improvements; and

WHEREAS, Fehr & Peers Associates has prepared a transportation impact fee study dated September 2006 (Nexus Report), attached as Exhibit A, and hereby incorporated by reference, that provides the technical basis for implementation of a TIF and TIP in the Southeast Oakland area documenting the analytical approach for determining the nexus between the cost of improvements and the local traffic impact created by anticipated development in the Southeast Oakland area along with a traffic and fair-share cost analysis conducted to equitably distribute the costs of the necessary improvements to development that causes the impacts, per the provisions of the Mitigation Fee Act; and

WHEREAS, in accordance with Government Code section 66016, at least 14 days prior to the public hearing at which the City Council first considered the adoption of this Ordinance, notice of time and place of the hearing was mailed to eligible interested parties; and

WHEREAS, in accordance with Government Code section 66016, the Nexus Report was available for public review and comment for 10 days prior to the public hearing at which the City Council first considered the adoption of the this Ordinance; and

WHEREAS, ten (10) days advance notice of the public hearing at which the City Council first considered the adoption of this ordinance was given by publication in accordance with Section 6062(a) of the Government Code; and

WHEREAS, the record establishes and the City Council finds as follows:

1. That the purpose of the TIF set forth in this Ordinance is to mitigate the traffic impacts of new development within the study area, by developing an overall transportation system that will accommodate the expected future traffic demand.

- 2. That the revenues from the Southeast Oakland TIF and TIP will be used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. These projects include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area.
- 3. There is a reasonable relationship between the fee's use and the type of development generated traffic with different characteristics and the nexus analysis presented in the technical study accounts for the differential impact on the local street system caused by different development types.
- 4. There is a reasonable relationship between the need for the facilities and the type of development on which the fee is imposed by determining that implementation of the improvements would return the traffic operations at the affected intersections to within the City's standards and that there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for improvements at these locations is attributable to traffic generated by new development.
- 5. There is a reasonable relationship between the amount of the fee and the cost of the public facility to ensure that all reasonably anticipated cost elements have been accounted for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs shall be distributed among the different development types in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category; now, therefore

THE COUNCIL OF THE CITY OF OAKLAND DOES ORDAIN AS FOLLOWS:

Section 1. Amendment. Oakland Municipal Code, Title 10 Vehicles & Traffic, is hereby amended with the text set forth herein:

Title 10 VEHICLES AND TRAFFIC Chapter 70 SOUTHEAST OAKLAND AREA TRAFFIC IMPACT FEE

10.70.10	GENERAL PROVISIONS AND DEFINITIONS
10.70.20	PAYMENT OF FEES
10.70.30	CREDITS AND REIMBURSEMENTS
10.70.40	FEE PROTESTS, APPEALS, AND ADJUSTMENTS
10.70.50	RESERVED

10.70.10	GENERAL PROVISIONS AND DEFINITION
Section 10.70.11	Authority and Reference to Chapter
Section 10.70.12	Purpose of Fees
Section 10.70.13	Impact Program Area
Section 10.70.14	Use of Fees
Section 10.70.15	Definitions

Sec. 10.70.11 Authority and reference to Chapter

This Chapter 70 of Title 10 of the Oakland Municipal Code may be referred to as the "Southeast Oakland Area Traffic Impact Fee" as is adopted pursuant to the authority of Article XI, Section 7 of the California Constitution, Government Code sections 66000 et seq. (hereinafter "Mitigation Fee Act"), and in accordance with findings set forth in the ordinance codified herein (and all amendments thereto).

Sec. 10.70.12 Purpose of Fee

Pursuant to this chapter, the City has established fees that will constitute a funding mechanism for traffic improvements required to mitigate cumulative traffic impacts in the Southeast Oakland area, as documented in the Leona Quarry Environmental Impact Report. Development of a TIF and TIP is required as part of the Conditions of Approval (see Condition #26) for the Leona Quarry project (Resolution No. 78358), and is also addressed in the Leona Quarry Settlement Agreement executed in December 2003 (Action No. RG-03077607).

Sec. 10.70.13 Impact Fee Program Area

The Traffic Impact Program (TIP) area is located in Southeast Oakland. The area generally extends along both sides of the I-580 freeway corridor between the Seminary Avenue and the 98th Avenue interchanges. A more detailed map of the geographic area included in the Southeast Oakland TIF and TIP Fee Study included as Appendix B, and made a part of the resolution establishing the TIF.

Sec. 10.70.14 Use of Fee

Fees imposed by the City pursuant to this chapter shall be used solely for the purpose of constructing or providing specific traffic and transportation related projects and/or facilities, as described in the implementing resolution(s). The fees shall be collected by the City and deposited in a separate and distinct "fee fund" in a manner to avoid commingling of the fees with other revenues or funds of the City. Such fees are subject to accounting requirements of the Mitigation Fee Act. Any interest income earned on the fund shall also be deposited therein and shall only be expended for the purpose for which the fee was originally collected.

Sec. 10.70.15 Definitions

As used in this chapter, all words, phrases, and terms shall be interpreted in accordance with the definitions set forth in the Mitigation Fee Act, unless otherwise defined herein.

"Future growth" means the total amount of potential new development in the City permitted under the General Plan. Future growth can be expressed in terms of either gross square footage for commercial, office, and industrial development, and in terms of the number of dwelling units for residential development.

"Affordable housing" means a housing unit that is provided at an affordable rent or sold at an affordable sales price to persons and families of low or moderate income. "Affordable sales price" means a sales price that would permit persons and families of low or moderate income to purchase the housing unit at an affordable housing cost. "Affordable housing cost" shall be as defined in California Health and Safety Code Section 50052.5. "Housing cost" shall include those items set forth in 25 California Code of Regulations Section 6920. "Affordable rent" shall be as defined in California Health and Safety Code Section 50053. "Persons and families of low or moderate income" shall be as defined in California Health and Safety Code Section 50093.

"Applicant" means any person, developer, or other legal entity, which applies to the City for approval of a development project.

"Change of Use" means any proposed use that results in an increase in the number of peak hour trips generated by the replacement land use.

"Development Project" means any project undertaken for the purpose of development, as defined in the Mitigation Fee Act, and shall specifically include any building permit, or any other permit or City approval required for a change of use. Development project shall specifically include any change of use or remodel.

"Director" means the Development Director who oversees the Planning, Zoning, and Building Services functions of the City of Oakland or any person designated by the City Administrator to perform the functions of the "Director" specified in this chapter.

"Fee" means, for the purpose of this chapter, a traffic impact fee imposed by the City in accordance with this chapter.

"Fee Fund" means each of the separate and distinct funds into which fees for each public facility category are deposited.

"Implementing Resolution" means a resolution of the City Council of the City of Oakland, including any technical report incorporated by reference.

"Inflation Index" means a recognized standard index (such as the Consumer Price Index or Engineering News Record Construction Cost Index), as determined by the Director to be a reasonable method of calculating the impact of inflation upon cost estimates set forth in implementing resolutions.

"Mitigation Fee Act" means California Government Code section 66000 et seq.

"Peak Hour Trip" is as defined in Trip Generation, 7th Edition by the Institute of Transportation Engineers (ITE).

"Traffic or Transportation Facility" means any traffic or transportation related public improvements, public services, or community amenities, as defined by the Mitigation Fee Act, including, but not limited to: traffic signals, street improvements, bicycle amenities and any

similar public improvement for which the City has adopted an implementing resolution pursuant to this chapter.

"Remodel" means any proposed improvement or reconstruction of an existing structure (or a previously existing structure) on a parcel which: (a) requires a building permit or other permit or City approval (such as a conditional use permit or a Zoning Administrator Permit), and (b) results in an increase in the number of peak hour trips generated from the last legal use of the existing structure.

"Vested Development Rights" means an Applicant's right to proceed with development of a development project in substantial compliance with the local ordinances, policies, and standards in effect at the time that the rights vests, as the term is defined in the vesting tentative map statutes (Government Code sections 66498.1 – 66498.9), development agreement statutes (Government Code sections 65864 – 65869.5), and other state laws.

10.70.20	PAYMENT OF FEES
Section 10.70.21	Obligation to pay fees
Section 10.70.22	Timing of Payment
Section 10.70.23	Amount of Payment
Section 10.70.24	Fee adjustment by the City
Section 10.70.25	Exemptions and Exceptions

Sec. 10.70.21 Obligation to pay fees

- (a) Each application for review and approval by the City for a development project within the program boundary area as defined in 10.70.13 including new, in-fill, change of use, and remodeling, shall pay traffic impact fees to the City, in accordance with the amounts set forth in the implementing resolution for said fee, unless the applicant establishes, to the satisfaction of the Development Director, entitlements to a fee credit pursuant to 10.70.30, a fee adjustment pursuant to 10.70.40, or a fee exemption or exception pursuant to 10.70.25.
- (b) The obligation to pay traffic impact fees pursuant to this chapter shall not replace an applicant's obligation to mitigate development project impacts in accordance with other requirements of state or local law. The obligation to pay the traffic impact fee will not replace the applicant's obligation for other impact related fees and programs.

Sec. 10.70.22 Timing of Payment

The fee for each unit of development within a development project shall be imposed at the time of planning and zoning approvals and will paid in full prior to the issuance of the certificate of occupancy. Failure by the City to collect payment at time of issuance of certificate of occupancy does not waive the City's right to collect this fee.

The full amount of the fee shall be paid at the times set forth in this section:

- (a) Residential Development.
- 1. Except as provided in subsection (a)(2) of this section, the fee with respect to residential development shall be paid in one of the following ways:

For residential development consisting of only one dwelling unit, before the final inspection, or the date the certificate of occupancy is issued, whichever occurs first; or

For residential development consisting of more than one dwelling unit, at the discretion of the Director: (i) on a pro rata basis for each dwelling unit within the residential development before the dwelling unit receives its final inspection or certificate of occupancy, whichever occurs first, or (ii) on a pro rata basis when a specified percentage of the dwelling units within the residential development have received their final inspections or certificates of occupancy, whichever occurs first, or (iii) on a lump sum basis when the first dwelling unit within the residential development receives its final inspection or certificate of occupancy, whichever occurs first.

If the fee is not fully paid before issuance of a building permit, under this subsection (a)(1), the property owner shall enter into a written agreement with the City pursuant to subsection (c) of this section.

- 2. Notwithstanding the provisions of subsection (a)(1) of this section, the director may require the payment of the fees imposed under this chapter before a building permit is issued, where the director determines that such fees will be collected for the purpose of defraying the actual or estimated cost of constructing traffic improvements for which an account has been established and funds appropriated and for which the city has adopted a proposed construction schedule or plan prior to any final inspection or issuance of a certificate of occupancy for a dwelling unit within the residential development; or the fees are to reimburse the city for expenditures previously made for the construction of traffic improvements.
- (b) Nonresidential Development. The Applicant shall pay the traffic impact fee at one of the following times, at the Applicant's option:
 - 1. Before the issuance of the building permit;
- 2. Before the first certificate of occupancy is issued, or consistent with the requirements of subsection (c) below;
- (c) Written Agreement. If an owner or Applicant chooses to pay the fee after the time a building permit is issued, then before the building permit is issued, he or she shall enter into a written agreement with the City, in a form acceptable to the City Attorney, and record the agreement with the Alameda County recorder.

Sec. 10.70.23 Amount of Payment

- (a) The fee to be paid for each unit of development within a development project within the traffic impact program area shall be the amount of the fee in effect, pursuant to implementing resolution, at the time that full payment is made to the City.
- (b) The fee to be paid for a remodel action shall be the amount of the fee required pursuant to subsection 10.70.23(a) for that portion of the remodel which generates impacts greater than the last legal use of the existing structure.
- (c) In the event that a previous partial fee payment is made for any unit of development, the full fee to be paid for that unit shall be the amount of the fee in effect, pursuant to implementing resolution, at the time that full payment is made to the City, less the amount of the previous partial payment.
- (d) The Applicant shall have the burden of proving the amount of any fee previously paid, the date on which payment was made, and the unit of development for which payment was made.
- (e) It is the intent of the City that the fees required by this Chapter shall be supplementary to the fees, dedications or conditions imposed upon development pursuant to the provisions of the Subdivision Map Act, California Environmental Quality Act, and other state laws and city ordinances or policies which may authorize the imposition of fees, dedications or conditions.

Sec. 10.70.24 Fee adjustments by the City

The City reserves the right to update and adjust the TIP fee from time to time, in accordance with the Mitigation Fee Act. The fee in effect at the time any Applicant has obtained a vested development right shall be subject to adjustment by the City as incorporated in updated implementing resolutions in effect at the time that full payment of the fee is made, based upon any or all of the following criteria:

- (a) Adjustments in the amount of the estimated construction costs of providing the specified public facilities based upon adjustments in accordance with the Inflation Index.
- (b) Adjustments to replace estimated costs with actual costs (including carrying costs) of providing the specified traffic and/or transportation facilities.
- (c) Adjustments to reflect more accurate cost estimates of providing the specified traffic and transpiration facilities based upon more detailed analysis or design of the previously identified specified public facilities.

Sec. 10.70.25 Exemptions and Exceptions

(a) Affordable housing units are exempt from the TIP and TIF. Restrictions on household incomes, rents and sales prices shall be in the form of a regulatory agreement, affordability agreement, resale controls, declaration of covenants, or similar binding instrument executed by

the City and the Applicant. Such restrictions shall be recorded against the affordable housing units as covenants running with land, senior in priority to any private liens or encumbrances, and shall be enforceable by the City against the project applicant or the applicant's successors-in-interest to the units for the full affordability term. In the case of rental units, the restrictions shall have a term of not less than 55 years from the date of initial occupancy of the unit. In the case of ownership units, the restrictions shall have a term of not less than 45 years from the date of initial occupancy of the unit.

- (b) Residential development projects are exempt from TIP and TIF the impact fees for any remodel, as long as it does not result in a change of use or does not increase the number of housing units.
- (c) A reconstruction of a razed structure shall receive a fee credit only if the Applicant submits documentation to the satisfaction of the Development Director establishing that the razed structure was in existence in accordance with the timing requirements of this subsection. If a development project receives a credit pursuant to this subsection, the amount of the fee to be paid shall be: (i) the amount of the fee required pursuant to subsection 10.70.25(a) for the entire new structure, (ii) minus the amount of the fee which would have been required pursuant to subsection 10.70.25(a) for the last legal use of the razed structure. In order to be entitled to a credit for the traffic impact fee, the razed structure is required to have been in existence on or after the date this ordinance is in effect.
- (d) An Applicant may request a refund of a fee previously paid in accordance with this Chapter only if the Applicant provides written documentation to the satisfaction of the Development Director that: (1) the building permit (including any permit or City approval on which the fee was imposed) is cancelled or voided, and (2) work has not progressed on the building permit which would allow commencement of a new use or change of use, and (3) the City has not already committed the fees to the construction of traffic or transportation facilities. Any refund made pursuant to this subsection may, in the discretion of the Development Director, include a deduction to cover the City's administrative costs of processing the refund.

10.70.30	CREDITS AND REIMBURSEMENTS
Section 10.70.31	Application for Potential Credit
Section 10.70.32	Timing of Application
Section 10.70.33	Amount of Potential Credit
Section 10.70.34	Request for Reimbursement
Section 10.70.35	Allocation of Reimbursements

Sec. 10.70.31 Application for Potential Credit

An Applicant may be eligible for a credit against TIF otherwise owed, in return for providing a traffic or transportation facility to the City, only if the Applicant submits a written application to the Development Director which establishes compliance with all of the following requirements to the satisfaction of the Development Director:

- (a) Describe the specified traffic or transportation facility (or portion thereof) proposed to be provided by the Applicant, with a cross-reference to the description of the specified traffic or transportation facility in the relevant implementing resolution.
- (b) Identify the estimated cost of providing the specified traffic or transportation facilities (including construction, design, and/or land acquisition, as set forth in the implementing resolution in effect at time application to the City) for which the Applicant is requesting credit.
- (c) Describe the development project or projects to which the fee credit is requested to apply. The description shall be limited to all or a portion of the development project for which specified public facilities are a condition of approval.
- (d) Document that either: (1) the Applicant is required, as a condition of approval for the development project, to construct the specified public facilities; or (2) the Applicant requests to build one or more specified traffic or transportation facilities which benefit the development project, and the Development Director determines in writing prior to the commencement of construction that it is in the City's best interests for the specified public facilities to be built by the Applicant.
- (e) The Applicant must enter into a subdivision improvement agreement or other written agreement with the City, in a form acceptable to the City Attorney, before beginning construction of the improvement.

Sec. 10.70.32 Timing of Application.

The application for credit shall be submitted by the Applicant to the Development Director in accordance with the following timing requirements: (a) to the extent that the Applicant requests credit for design or construction, the application shall be submitted concurrently with the submittal of improvement plans; (b) to the extent that the Applicant requests credit for land dedication, the application shall be submitted prior to the recordation of the final map or parcel map for the development project. The Applicant may submit a late application only if the Applicant establishes, to the satisfaction of the Director, that, in light of new or changed circumstances, it is in the City's best interests to allow the late application.

Sec. 10.70.33 Amount of Potential Credit

In the event that the Director determines that the Applicant has submitted a timely application in compliance with 10.70.32, and it is in the City's best interest to allow the Applicant to provide the proposed specified traffic or transportation facility, the Applicant may be entitled to credit against fees otherwise owed in accordance with this chapter, provided that the Applicant enters into an agreement with the City which includes the following essential terms:

(a) The design of the specified traffic or transportation facility is approved by the City

- (b) The Applicant agrees to provide the specified public facilities in return for the credit to be allocated in accordance with the terms of the agreement and this chapter. The Applicant provides in writing a document indicating the estimate time to design and construct the relevant traffic or transportation facility, along with an estimated date of completion.
- (c) The amount of credit available to the Applicant shall not exceed the lesser of: (i) the Applicant's actual cost of providing the specified public facility, to be evidenced by the submittal of written documentation to the satisfaction of the Director, and (ii) the estimated cost of providing the specified public facility, as identified in the implementing resolution.
- (d) The Applicant provides improvement security in a form and amount acceptable to the City.
- (e) The Applicant identifies the development projects to which the credit will be applied.

Sec. 10.70.34 Request for Reimbursement

To the extent that the Applicant has a balance of credit available, the Applicant may submit a written request for reimbursement to the Development Director. The Applicant shall be entitled to potential reimbursement from the City only if the Applicant submits a written request to the Development Director which establishes the following:

- (a) The request shall be made no later than 180 days after the later to occur of: (i) issuance of the last certificate of occupancy within the development project for which the application for credit was made, or (ii) the date of the City's acceptance of the specified traffic or transportation facilities as complete.
- (b) The request shall identify the specific dollar amount of the credit balance for which the Applicant requests reimbursement, along with documentation in support thereof. This documentation shall include a calculation of the total credit available (pursuant to 10.70.33) less amount of credit previously allocated to offset fees pursuant to section.
- (c) The request must include a designation of the name and address of the legal entity to which reimbursement payments are to be made.

Sec. 10.70.35 Allocation of Reimbursements

(a) In the event the Development Director determines that the Applicant has properly submitted a request for reimbursement pursuant to 10.70.34, the Development Director shall prepare a written determination which will identify the dollar amount of the potential reimbursement. The dollar amount of the reimbursement shall equal the amount specified in the Applicant's request (not to exceed the actual credit available to the Applicant, less the total of all credit allocations to offset fees pursuant to 10.70.33, as determined by the Director).

- (b) The City shall make reimbursement payments to the Applicant. The right to receive reimbursement payments, if any, shall not run with the land.
- (c) The City shall make reimbursement payments pursuant to a schedule to be established by the Director, and consistent with the approved capital improvement program. The City shall make no reimbursements to any Applicant in excess of the amount of fees deposited in the relevant reimbursement account.
- (d) No reimbursement payment shall be made to an Applicant until after the completion of construction by the Applicant, and acceptance of improvements by the City.

10.70.40	FEE PROTESTS, APPEALS, AND ADJUSTMENTS
Section 10.70.41	Notice of Protest Rights
Section 10.70.42	Director's Determination
Section 10.70.43	Appeal of Director's Determination
Section 10.70.44	Cost of Protest
Section 10.70.45	Implementing Regulations

Sec. 10.70.41 Notice of Protest Rights

- (a) Each Applicant is hereby notified that, in order to protest the imposition of a traffic impact fee required by this chapter, the protest must be filed in accordance with the requirements of this chapter and the Mitigation Fee Act. Failure of any person to comply with the protest requirements of this chapter or the Mitigation Fee Act shall bar that person from any action or proceeding or any defense of invalidity or unreasonableness of the imposition.
- (b) On or before the date on which payment of the fee is due, the Applicant shall pay the full amount required by the City and serve a written notice to the Director with all of the following information: (1) a statement that the required payment is tendered, or will be tendered when due, under protest; and (2) a statement informing the City of the factual elements of the dispute and the legal theory forming the basis for the protest.
- (c) The Applicant shall bear the burden of proving, to the satisfaction of the Director, entitlement to a fee adjustment. The evidence (information and documentation) to be submitted by the Applicant in support of the protest shall include, but not be limited to, an identification of the amount of the fee which the Applicant alleges should be imposed upon the development project, and all factual and legal bases for the allegation. The Applicant shall identify each portion of this Impact Fee Ordinance and any implementing resolution which the Applicant claims supports the allegation. The Applicant shall identify each portion of this Impact Fee Ordinance and each portion of any implementing resolution (in particular the technical reports incorporated therein) which the Applicant claims fails to support the City's imposition of the fee upon the development project. At the request of the Director, the Applicant shall provide additional information or documentation in substantiation of the protest.

Sec. 10.70.42 Director's Determination

No more than 30 days after receipt of all requested materials identified in section 10.70.41(c), the Director shall investigate the factual and legal adequacy of the Applicant's protest to render a decision and issue a written determination regarding the protest. During the review process, the Director shall consider the Applicant's protest, relevant evidence assembled as a result of the protest. The Director's determination shall support the fee imposed upon the development project unless the Applicant establishes, to the satisfaction of the Director, entitlement to an adjustment to the fee.

Sec. 10.70.43 Appeal of Director's Determination

Any Applicant who desires to appeal a determination issued by the Director pursuant to 10.70.42 shall submit a written appeal to the Director and the City Administrator. A complete written appeal shall include a complete description of the factual elements of the dispute and the legal theory forming the basis for the appeal of the Director's determination. An appeal received by the City Administrator more than ten calendar days after the Director's determination shall be rejected as late. No later than 30 days after receipt of a complete and timely appeal, the City Administrator shall render a decision. The City Administrator's decision is final and conclusive.

Sec. 10.70.44 Costs of Protest

The Applicant shall pay all City costs related to any protest or appeal pursuant to this chapter, in accordance with the fee schedule adopted by the City. At the time of the Applicant's protest, and at the time of the Applicant's appeal, the Applicant shall pay a deposit in an amount established by the City to cover the estimated reasonable cost of processing the protest and appeal.

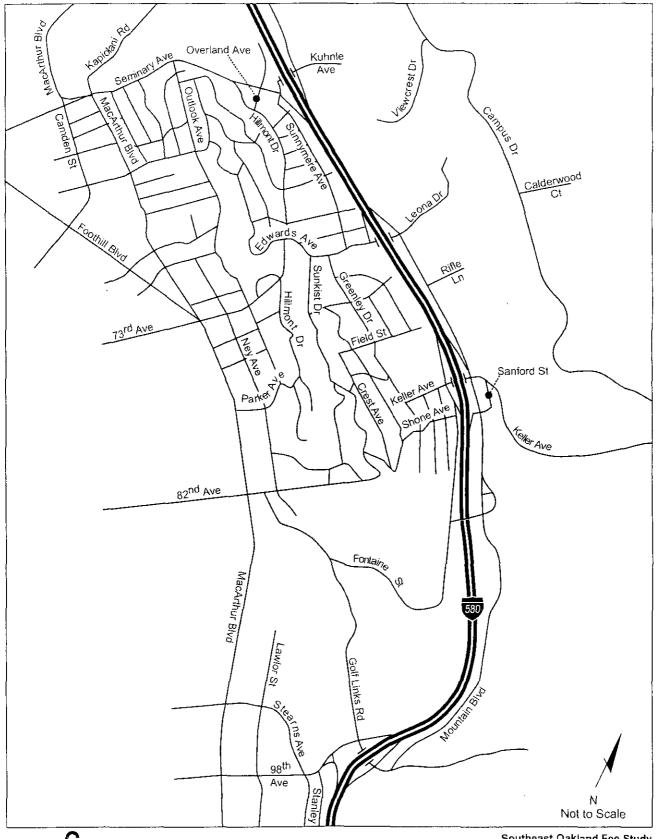
Sec. 10.70.45 Implementing Regulations

The City Administrator is hereby authorized to adopt rules and to implement this chapter and to make such interpretations of this chapter as he or she may consider necessary to achieve the purposes of this chapter.

Sec. 10.70.50 RESERVED

Section 2: <u>Chapter and section headings</u>. Chapter and section headings contained herein shall not be deemed to govern, limit, modify, or in any manner affect the scope, meaning, or intent of the provisions of any chapter, title, or section hereof.

Section 3: Severability. The provisions of this Ordinance are severable, and if any clause, sentence, paragraph, provision, or part of this Ordinance, or the application of this Ordinance to any person, is held to be invalid or preempted by state or federal law, such holding shall not impair or invalidate the remainder of this Ordinance. If any provision of this Ordinance is held to be inapplicable to any specific development project or applicant, the provisions of this Ordinance shall nonetheless continue to apply with respect to all other covered development projects and


applicants. It is hereby declared to be the legislative intent of the City Council that this Ordinance would have been adopted had such provisions not been included or such persons or circumstances been expressly excluded from its coverage.

Section 4: Effective Date. This Ordinance shall be effective 60 days following its final passage and adoption.

Section 5: <u>Publication</u>. This Ordinance shall be published once in The Oakland Tribune, a newspaper of general circulation, printed and published in Alameda County and circulated in the City of Oakland, within fifteen days after adoption.

IN COUNCIL, OAKLAND, CALIFORNIA,	, 20
PASSED BY THE FOLLOWING VOTE:	
AYES- BROOKS, BRUNNER, CHANG, KERNIGHAN, NADEL, Q	UAN, REID, and PRESIDENT DE LA FUENTE
NOES-	
ABSENT-	
ABSTENTION-	DRAFT
	ATTEST:
	La Tonda Simmons City Clerk and Clerk of the Council

Council of the City of Oakland, California

Southeast Oakland Fee Study

Final Draft Report

Southeast Oakland Traffic Improvement Fee Study

September 2006

Prepared for: City of Oakland

TABLE OF CONTENTS

1.	Introduction	4
	Background	4
	Purpose	. 4
	Use of the Traffic Mitigation Fee	4
	Study Area	5
	Study Process	5
	Organization of the Report	5
2.	The Proposed Fee Program	7
3.	Analysis Methods and Results	9
4.	Findings	17

APPENDICES

Appendix A: Summary of Fee Programs in Other Jurisdictions

Appendix B: TIF and TIP Area and Land Use Projections

Appendix C: Description of Edwards/Seminary Corridor Study

Appendix D: Detailed Traffic Level of Service Analysis Worksheets

Appendix E: Project Cost Estimates

LIST OF FIGURES

Figure 1	Study Area	. 6
Figure 2	Southeast Oakland Traffic Improvement Fee Projects	. 8

LIST OF TABLES

Table 1	Existing Conditions Peak Hour Intersection Levels of Service	10
Table 2	Southeast Oakland TIF and TIP Project List	11
Table 3	Future Peak Hour Intersection Levels of Service Without and With Mitigation	12
Table 4	Cost Estimates for Southeast Oakland TIF/TIP Improvements	13
Table 5	Southeast Oakland TIF and TIP Area Housing and Employment Projections	15
Table 6	DUE Conversion Factors	15
Table 7	Growth Converted to DUEs	16
Table 8	Preliminary Southeast Oakland TIF and TIP Fee Calculations	16

1. INTRODUCTION

BACKGROUND

Pursuant to the *Mitigation Fee Act*, California Government Code Section 66000, et seq. (also known as AB 1600), a local agency is authorized to charge a fee to development applicants in connection with approval of a development project for the purpose of defraying all or a portion of the costs of public facilities related to the development project. The capital improvements funded through a fee program are typically those required to mitigate the traffic impacts of new development within the study area. Specifically, the purpose of the fee is to maintain adequate level of service standards at intersections throughout the study area. The fee is not imposed to improve or correct deficiencies in baseline service levels, or to mitigate the impacts of regional (through) traffic.

Transportation impact fees are commonly collected in many jurisdictions in the Bay Area and throughout California to aid in financing transportation infrastructure required by new development. Currently, the City of Oakland does not collect transportation-related impact fees for new developments. For comparison and reference purposes, Appendix A includes a summary of impact fee programs in a selection of northern California cities.

PURPOSE

The purpose of this study is to provide the technical basis for implementation of a Traffic Improvement Fee (TIF) and Traffic Improvement Program (TIP) in the Southeast Oakland area. The TIF and TIP will constitute a funding mechanism for traffic improvements required to mitigate cumulative traffic impacts in the Southeast Oakland area, as documented in the Leona Quarry Environmental Impact Report. Development of a TIF and TIP is required as part of the Conditions of Approval (see Condition #26) for the Leona Quarry project, and is also addressed in the Leona Quarry Settlement Agreement executed in December 2003.

This report documents the analytical approach for determining the nexus between the cost of improvements and the local traffic impact created by anticipated development in the Southeast Oakland area. A traffic and fair-share cost analysis is conducted to equitably distribute the costs of the necessary improvements to development that causes the impacts, per the provisions of AB 1600.

USE OF THE TRAFFIC MITIGATION FEE

AB 1600 requires that mitigation fee programs comply with certain basic requirements, including:

- Identifying the purpose of the fee
- Identifying how the fee will be used and the facilities to be funded through the fee
- Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed

- Determining a reasonable relationship between the need for the public facility and the type of development on which the fee is imposed
- Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development

These items are addressed throughout this study and are summarized in the final chapter.

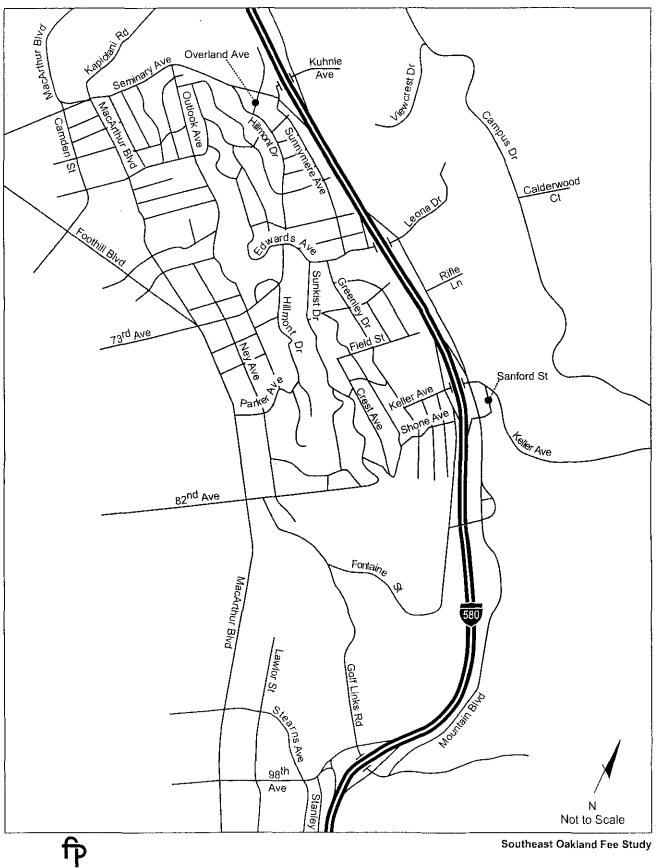
STUDY AREA

The study area is located in Southeast Oakland and is shown on Figure 1. The area generally extends along both sides of the I-580 freeway corridor between the Seminary Avenue and the 98th Avenue interchanges. A more detailed map of the geographic area included in the Southeast Oakland TIF and TIP is provided in Appendix B. The goal of the study is to calculate a fee that would be collected on new development in the Southeast Oakland TIF and TIP area.

STUDY PROCESS

This study was developed under the direction of City of Oakland staff. After review and public hearing, the City Council will consider approval of the study and adoption of an ordinance specifying a fee schedule.

ORGANIZATION OF THE REPORT


This report contains a total of four chapters including this introductory chapter.

Chapter 2 – Fee Program Background provides an overview of fee programs and the factors considered in this analysis. A description of the projects proposed to be included in this TIF program is also included.

Chapter 3 – Analysis Methods and Results describes the technical analysis conducted to establish the nexus between local development and the costs of improvements, and presents the results of the fee calculations.

Chapter 4 – Findings reviews the study procedures and results in the context of the requirements of AB 1600.

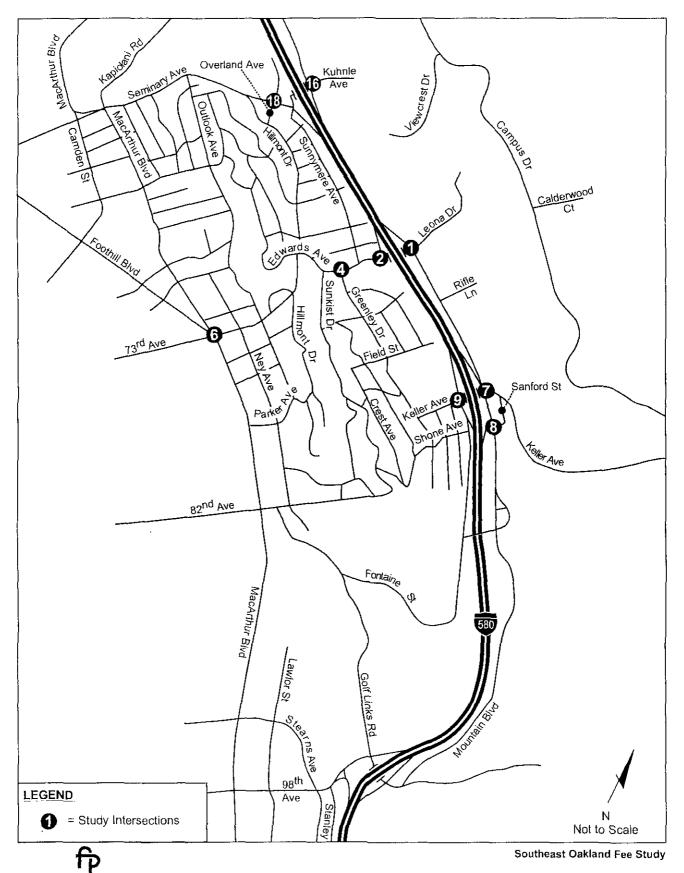
FEHR & PEERS TRANSPORTATION CONSULTANTS

STUDY AREA

THE PROPOSED FEE PROGRAM 2.

This chapter describes the impetus behind this proposed fee program and identifies the project locations covered by the Southeast Oakland TIF and TIP.

The Southeast Oakland TIF and TIP developed here is intended to assess the cost-sharing responsibilities for capital roadway improvements identified in the Leona Quarry EIR and in the Conditions of Approval for the Leona Quarry project. As specified in these documents and in the Leona Quarry Settlement Agreement, the following improvements will be included in the Southeast Oakland TIF and TIP1:


- 1. I-580 Westbound On-Ramp/Edwards Avenue/Mountain Boulevard; Install traffic signal and associated geometric changes.
- 2. I-580 Eastbound Off-Ramp/Edwards Avenue: Install traffic signal and associated geometric changes (including improvements to the Burckhalter Park driveway).
- 4. Greenly Drive/Edwards Avenue: Restripe Edwards Avenue to provide a separate westbound leftturn lane.
- 6. MacArthur Boulevard/Foothill Boulevard/73rd Avenue; Modify west leg to add a second eastbound left-turn lane.
- 7. Mountain Boulevard/Keller Avenue: Install traffic signal.
- I-580 Westbound Off-Ramp/Mountain Boulevard/Shone Avenue: Install traffic signal.
- 9. I-580 Eastbound Off-Ramp/Keller Avenue: Install traffic signal.
- 16. I-580 Westbound Off-Ramp/Seminary Avenue/Kuhnle Avenue: Install traffic signal and add second eastbound left-turn lane.
- 18. I-580 Eastbound Off-ramp/Seminary Avenue/Overdale Avenue: Install traffic signal.

In addition, Conditions of Approval #26g and #26h call for the TIF and TIP to include a study of other potential long-term operational improvements along the Edwards Avenue, 82nd Avenue, and Seminary Avenue routes, including any further intersection improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR. A more detailed description of this study is included in Appendix C.

The locations of these TIF and TIP projects are shown on Figure 2. The nexus analysis presented in the subsequent chapters calculates fees that can be collected to support improvements at these locations.

Intersection numbering is consistent with that used in the Leona Quarry EIR.

FEHR & PEERS

SOUTHEAST OAKLAND TRAFFIC IMPROVEMENT FEE PROJECTS

3. ANALYSIS METHODS AND RESULTS

The analysis methods used to determine the nexus between traffic impacts from new developments and the associated improvement measures are outlined in this chapter, along with the results of the fee calculations.

Step 1 - Review and Update Prior Traffic Analysis

The capital improvements to be included in this fee study were initially identified as mitigation measures in the Leona Quarry EIR. The analysis presented in the EIR was based on traffic forecasts derived from 2020 land use projections used in the Alameda County Congestion Management Agency (ACCMA) model. More recently, year 2025 ACCMA model land use projections have become available. For this study, an updated analysis using the most recent land use projections currently available was conducted to verify the applicability of the mitigation measures. The process of reviewing and updating the traffic analysis is described below. Appendix B provides further detail about the land use projections.

Existing Traffic Conditions

Existing peak hour operating conditions at the relevant study intersections from the Leona Quarry EIR are presented in Table 1. As shown in Table 1, the EIR analysis found that all intersections currently operate acceptably at LOS D or better during the morning and evening peak hours.

Future Traffic Conditions

As described above and in Appendix B, an updated future conditions analysis was conducted to ensure that the improvements called for in the Leona Quarry EIR would remain adequate to address future traffic demands. In this analysis, peak hour trips from new development in the study area were generated using rates from the Institute of Transportation Engineers (ITE) *Trip Generation*, 7th Edition and were added to the existing traffic volumes (a figure showing the resulting traffic volumes is included in Appendix D). The purpose of this analysis was to confirm that traffic from the new developments in the local study area would cause the need for improvements at the study intersections; to achieve this, no growth in traffic from outside the study area was assumed. In addition, we wanted to confirm that the mitigation measures proposed in the Leona Quarry EIR would be adequate to mitigate the projected deficiencies. A summary of these mitigation measures, which are the improvements included in this TIF and TIP, is provided in Table 2.

The resulting future peak hour traffic volumes were analyzed at each of the study locations, both with and without the specified mitigation measures, and the results are shown in Table 3. The results indicate that, with the addition of traffic from the new local developments ("Future Conditions"), all of the intersections would operate poorly, with levels of service at LOS E or F or with excessive queuing that would obstruct traffic flow. When the mitigation measures were applied ("Future With Mitigation"), all intersections would operate at LOS D or better, which is consistent with the City's standards. Thus, the capital improvements

identified for inclusion in the Southeast Oakland TIP/TIF will mitigate the traffic effects of new development in the area. Appendix D contains the detailed LOS analysis worksheets.

TABLE 1 EXISTING CONDITIONS PEAK HOUR INTERSECTION LEVELS OF SERVICE

	AM Peak Hour		PM Peak Hour	
Intersection	Delay	LOS1	Delay	LOS1
Side-Street Stop-Controlled	_			
1. I-580 WB On-Ramp/Mountain Boulevard/Edwards Avenue	9.1	Α	5.7	В
2.1-580 EB Off-Ramp/Edwards Avenue	3.9	А	3.6	Α
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	4.4	Α	6.3	В
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	8.6	В	8.2	В
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	4.2	Α	9.1	В
All-Way Stop-Controlled			·	
7. Mountain Boulevard/Keller Avenue	13.6	С	12.8	С
9. I-580 EB Off-Ramp/Keller Avenue	7.9	В	14.7	С
Signalized				
Greenly Drive/Edwards Avenue	9.1	В	13.5	В
6. MacArthur Boulevard/73 rd Avenue	28.6	D	27.2	D

Notes: LOS = Level of Service; WB = westbound; EB = eastbound

Source: Revised Draft Traffic Study for the Proposed Residential Development at Leona Quarry Site in the City of Oakland, TJKM Transportation Consultants, June 7, 2002.

^{1.} Based on Highway Capacity Manual (HCM) 1994 method for unsignalized and signalized intersection service levels.

TABLE 2 SOUTHEAST OAKLAND TIF AND TIP PROJECT LIST					
ID	Project	Description			
1 (MM K.2a)	I-580 WB On-Ramp/ Mountain Boulevard/ Edwards Avenue	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Edwards Avenue 			
2 (MM K.2b)	I-580 EB Off-Ramp/ Edwards Avenue	 Signalize intersection and coordinate with I-580 WB Off- Ramp/Edwards Avenue 			
4 (MM K.2c)	Greenly Drive/ Edwards Avenue	Add westbound left-turn lane			
6 (MM K.2d)	MacArthur Boulevard/ 73 rd Avenue	Add second eastbound left-turn lane			
	Mountain Boulevard/ Keller Avenue	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Keller Avenue 			
7 (MM K.2e)		 Re-stripe eastbound approach from one shared left/through/right lane to one shared left-turn/through lane and one shared through/right-turn lane 			
		Re-stripe west leg of Keller Avenue from two lanes to one lane			
8 (MM K.2f)	Mountain Boulevard/ I-580 WB Off-Ramp/ Shone Avenue	Signalize intersection Re-stripe existing right-turn only lane on 1-580 WB off-ramp shared left-turn/right-turn lane			
9 (MM K.2g)	I-580 EB Off-Ramp/ Keller Avenue	 Signalize intersection and coordinate with Mountain Boulevard/Keller Avenue 			
46	I-580 WB Off-Ramp/	 Signalize intersection and coordinate with I-580 EB Off- Ramp/Overdale Avenue/Seminary Avenue and I-580 EB On- Ramp/Seminary Avenue/Kuhnle Avenue 			
16 (MM K.2h)	Seminary Avenue/ Kuhnle Avenue	 Re-stripe eastbound Kuhnle Avenue to include two exclusive left-turn lanes and one through lane 			
		 Widen the north leg of Mountain Boulevard to one southbound lane and two northbound lanes 			
18 (MM K.2i)	I-580 EB Off-Ramp/ Overdale Avenue/ Seminary Avenue	 Signalize intersection and coordinate with I-580 WB Off- Ramp/Seminary Avenue/Kuhnie Avenue and I-580 EB On- Ramp/Seminary Avenue/Kuhnle Avenue 			
A (COA 26g/h)	Study of Edwards Avenue and Seminary Avenue operational improvements	 A study of other long-term operational traffic improvements along the Edwards Avenue, 82nd Avenue segment and Seminary Avenue routes, particularly the Foothill-82nd Avenue segment and the MacArthur-Seminary segment, including any further intersection improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR 			

TABLE 3 FUTURE PEAK HOUR INTERSECTION LEVELS OF SERVICE WITHOUT AND WITH MITIGATION

			AM Pe	ak Hour			PM Pea	k Hour	
		Future		Future With Mitigation		Futu	re	Future With Mitigation	
Intersection	Traffic Control ¹	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. I-580 WB On-Ramp/ Mountain Boulevard/ Edwards Avenue	Side Street Stop ² (Signal ³)	>50 (NB)	F	15	В	>50 (NB)	F	11	В
2. I-580 EB Off-Ramp/ Edwards Avenue	Side Street Stop ² (Signal ³)	41 (SB)	E	20	В	47 (SB)	E	19	В
4. Greenly Drive/ Edwards Avenue	Signal ³	10	В	11	В	9	A ⁵	13	В
6. MacArthur Boulevard/ 73 rd Avenue	Signal ³	>80	F	49	D	>80	F	55	D
7. Mountain Boulevard/ Keller Avenue	All-Way Stop ⁴ (Signal ³)	>50	F	12	В	>50	F	9	Α
8. Mountain Boulevard/ I-580 WB Off-Ramp/ Shone Avenue	Side Street Stop ² (Signal ³)	33 (EB)	D	8	А	>50 (EB)	F	9	А
9. I-580 EB Off-Ramp/ Keller Avenue	All-Way Stop ⁴ (Signal ³)	20	С	18	В	>50	F	20	В
16. I-580 WB Off-Ramp/ Seminary Avenue/ Kuhnle Avenue	Side Street Stop ² (Signal ³))	>50 (NB)	F	20	С	>50 (NB)	F	19	В
18, I-580 EB Off-Ramp/ Overdale Avenue/ Seminary Avenue	Side Street Stop ² (Signal ³)	27 (NB)	С	7	А	>50 (NB)	F	11	В

Notes: LOS = Level of Service; NB = northbound; SB = southbound; WB = westbound; EB = eastbound.

- 1. Traffic control with mitigation shown in parenthesis,
- Side-street stop-controlled intersection level of service based on worst approach delay per vehicle (in seconds), according to the Highway Capacity Manual (HCM) – Special Report 209 (Transportation Research Board, 2000). The worst approach is indicated in parenthesis.
- 3. Signalized intersection level of service is based on average control delay per vehicle (in seconds), according to HCM 2000.
- All-way stop-controlled intersection level of service is based on average delay per vehicle (in seconds), according to HCM 2000.
- 5. Westbound 95th percentile queue greater than 1,000 feet without mitigation.

Source: Fehr & Peers, 2006.

Step 2 - Summarize Capital Improvements and Estimate Costs

During preparation of the EIR and the Conditions of Approval, cost estimates were developed for the improvements identified in Chapter 2. The cost estimates have been reviewed and updated for the purposes of this TIF and TIP study, and are based on actual construction and design engineering costs (where available), current City fees, and local construction cost trends. Table 4 lists the proposed TIF/TIP improvements and their associated costs. The detailed cost estimate worksheets for each project are included in Appendix E.

TABLE 4 COST ESTIMATES FOR SOUTHEAST OAKLAND TIF/TIP IMPROVEMENTS										
Location	Cost Estimate									
1 and 2. I-580 WB On-Ramp/Edwards Avenue and	\$961,300									
I-580 EB Off-Ramp/Edwards Avenue										
4. Greenly Drive/Edwards Avenue	\$107,800									
6. MacArthur Boulevard/73 rd Avenue	\$622,300									
7. Mountain Boulevard/Keller Avenue	\$823,200									
8. Mountain Boulevard/I-580 WB Off-Ramp/Shone Avenue	\$409,100									
9. I-580 EB Off-Ramp/Keller Avenue	\$411,400									
16. I-580 WB Off-Ramp/Seminary Avenue/Kuhnle Avenue	\$757,000									
18. I-580 EB Off-Ramp/Overdale Avenue/Seminary Avenue	\$417,600									
A. Study of Edwards Avenue and Seminary Avenue operational improvements	\$350,000									
Total Cost of Improvements	\$4,859,700									
Source: HQE, Incorporated, 2006; City of Oakland, 2006.										

Step 3 – Summarize the Amount of New Development

For purposes of a fee calculation, it is important to identify the amount of future growth expected in the fee program area, in order to produce a reasonably accurate estimate of the new development that will be subject to the fee. Existing and future land use projections from the ACCMA model were used to determine the amount of new development expected in the TIF and TIP area.

The most recent available set of Oakland land use data from the Alameda County CMA model was used to estimate the total amount of new development expected in the TIF and TIP area. The ACCMA model projections were provided in four basic land use categories: residential dwelling units, retail jobs, service jobs, and manufacturing jobs. Because there are different traffic-generating characteristics from different housing types, the City requested that the residential land use projections be broken down into two

categories: traditional single-family dwelling units and other residential types. Many of the residential development projects being proposed in this area of the City involve duet homes, townhomes, or other attached residential types that may have somewhat different traffic characteristics from traditional single-family development. For the Leona Quarry development, it is known that the project includes 404 townhomes and 19 single-family dwellings. For all other areas in the Southeast Oakland TIF/TIP area, it was assumed that the future residential development would be 40% single-family and 60% other types, which is generally consistent with the current development plans for the Oak Knoll site. The resulting development projections are shown in Table 5. The program area is expected to grow by approximately 1,400 residential units over the next 20 years; most of those new units are expected to be in the Leona Quarry and the Oak Knoll development areas. Employment is expected to grow by about 850 jobs, with most of the additional employment expected in the southernmost part of the TIF and TIP area, west of 1-580 and south of 98th Avenue.

The concept of Dwelling Unit Equivalents (DUEs) is commonly used in fee studies to account for the fact that different development types generate traffic with different characteristics and with different levels of impact on the city's transportation system. DUE conversion factors typically account for differences in peak hour trip rates for each development type, as well as the effects of pass-by trips that are often associated with commercial uses. For example, retail uses tend to generate more trips per square foot than office uses, but those retail trips tend to be shorter in length because people often visit several retail establishments during the course of a single trip, or stop by a retail business on their way to their final destination. The DUE conversion process accounts for these differences in impact on the transportation system.

The DUE factors developed for the Southeast Oakland TIF/TIP are shown in Table 6, and reflect the PM peak hour trip rates published in the Institute of Transportation Engineer's (ITE's) *Trip Generation* Manual, 7th Edition and the percentage of new trips (i.e., excluding pass-by trips) published in the San Diego Association of Governments (SANDAG) *Brief Guide of Vehicular Traffic Generation Rates*, July 1998. The results were normalized to the single-family dwelling unit rate to produce a DUE per unit rate for each land use category.

The projected growth in each land use category shown in Table 5 was multiplied by the DUE conversion factors shown in Table 6, and the resulting total number of DUEs by category is shown in Table 7. Appendix B provides detailed land use and DUE results for each traffic analysis zone in the Southeast Oakland TIF/TIP area.

TABLE 5 SOUTHEAST OAKLAND TIF AND TIP AREA HOUSING AND EMPLOYMENT PROJECTIONS							
Land Use Category	Projected Growth						
Single-Family Residential Units	422						
Other Residential Units	1,008						
Retail Jobs	481						
Service Jobs	387						
Manufacturing Jobs	0						
urce: Hausrath Economics Group, 2005.							

TABLE 6 DUE CONVERSION FACTORS										
Land Use Category	and Use Category Unit		% New Trips ²	DUE per Unit						
Single-Family Residences	Dwelling Unit	1.01	100%	1.00						
Other Residences	Dwelling Unit	0.78	100%	0.77						
Retail	Job	1.13	50%	0.56						
Service	Job	0.46	65%	0.30						
Manufacturing	Job	0.42	80%	0.33						

Notes:

PM peak hour trip rates from ITE Trip Generation, 7th Edition, using the following categories:

ITE #210: Single-Family Detached Housing used for Single-Family Residential category

ITE #231: Low-Rise Residential Condo/Townhouse used for Other Residential category

ITE #820: Shopping Center used for Retail Jobs category
ITE #710: General Office Building used for Service Jobs category

ITE #110: General Light Industrial used for Manufacturing Jobs category

SANDAG Brief Guide of Vehicular Traffic Generation Rates, July 1998.

Source: Fehr & Peers, 2006.

TABLE 7 GROWTH CONVERTED TO DUES										
Land Use Category	Total Growth	DUE Per Unit	Growth Converted to DUEs							
Single-Family Residential Units	422	1.00	422							
Other Residential Units	1,008	0.77	777							
Retail Jobs	481	0.56	270							
Service Jobs	387	0.30	115							
Manufacturing Jobs	0	0.33	0							
TOTAL DUEs			1,584							

Step 4 - Determine Fee Amounts

To determine the appropriate fee amounts assessed to individual developments, the total cost of the capital improvements (Step 2) was divided by the total number of new DUEs (Step 3). Table 8 displays the calculated impact fees by land use category. The total cost of the TIF and TIP improvement projects as shown in Table 4 (\$4,859,700) was divided by the total number of DUEs expected in the program area as shown in Table 7 (1,584) to calculate the resulting fee per DUE (\$3,068). An administration fee of 3% was added, to bring the final total fee to \$3,160 per DUE. These figures do not reflect any reductions or subsidies that the City may choose to implement.

TABLE 8 PRELIMINARY SOUTHEAST OAKLAND TIF AND TIP FEE CALCULATIONS							
Land Use Category	Fee/Unit						
Single-Family Residential	\$3,160/Unit						
Other Residential	\$2,440/Unit						
Retail	\$5.89/Square Foot						
Service	\$3.12/Square Foot						
Manufacturing	\$1.44/Square Foot						
Source: Fehr & Peers, 2006.							

4. FINDINGS

This report provides a detailed discussion of the elements of the proposed Southeast Oakland TIF and TIP and explains the analytical techniques used to develop this nexus study. The report addresses all the fee program elements required by AB 1600, as described below:

Identifying the purpose of the fee

The purpose of the Southeast Oakland TIF and TIP is to mitigate the traffic impacts of new development within the study area, by developing an overall transportation system that will accommodate the expected future traffic demand. Specifically, there are a number of intersections where traffic operations are expected to deteriorate with the addition of traffic from new development in the study area. Table 3 provides the traffic operations analysis results for these intersections and identifies the operations problems that are expected to occur if mitigation measures are not implemented. This TIF program is designed to fund the necessary mitigation measures and ensure that the traffic operations at the affected intersections remain within the City's standards.

Identifying how the fee will be used and the facilities to be funded through the fee

Revenues from the Southeast Oakland TIF and TIP will be used to fund capital improvement projects necessary to accommodate future traffic demand in the study area. These projects include such improvements as the installation and coordination of traffic signals, the provision of additional turn lanes, and/or the reconfiguration of lane geometries at nine different intersections throughout the study area. Table 2 describes all of the capital improvement projects to be funded through the fee program, and Table 4 summarizes the costs of those improvements. The TIF and TIP will be administered by the City of Oakland Public Works Agency.

<u>Determining a reasonable relationship between the fee's use and the type of development on which the fee is imposed</u>

Different types of development generate traffic with different characteristics and the nexus analysis presented in this report accounts for the differential impact on the local street system caused by different development types. Tables 5, 6 and 7 and the accompanying text describe the amount of new development of different types expected in the Southeast Oakland area over the next 20 years, including residential, retail, and professional/service types of uses. The traffic generated by these new uses will have effects on the nine intersections described above; the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

Determining a reasonable relationship between the need for the public facility and the type of development on which the fee is imposed

The need for the capital improvements listed in Table 2 was established in the Leona Quarry EIR. This report confirms that the mitigation measures identified in that EIR would adequately address the expected traffic operations issues (through the analysis described in Chapter 3, Step 1) by determining that implementation of the improvements would return the traffic operations at the nine affected intersections to within the City's standards. Table 1 shows there are no existing deficiencies on any of the facilities to be included in this TIF program, indicating that the need for

improvements at these locations is attributable to traffic generated by new development. As described above, the proposed fee levels are set such that each development type pays a fee that reflects its share of traffic contributions to the local transportation system.

Determining a reasonable relationship between the amount of the fee and the cost of the public facility (or portion of facility) attributable to new development

The nine intersections included in this study currently operate within the City's standards, indicating that there are no existing deficiencies at the improvement locations included in the TIF program. Further, the analysis presented in Table 3 shows that traffic generated by the new development expected in the Southeast Oakland TIF program area will cause operational deficiencies at the study locations; those deficiencies are mitigated by the identified capital improvement projects. Thus, the TIF program is targeted toward the public improvements necessary to accommodate the traffic generated by new development within the program area.

The cost estimates for the capital improvement projects have been carefully developed and reviewed to ensure that all reasonably anticipated cost elements have been accounted for, thus ensuring that implementation of the improvements will be supported by the fee revenues received. The projected costs are then distributed among the different development types in proportion to their respective traffic generating characteristics, resulting in the proposed fee for each land use category.

APPENDIX A: SUMMARY OF FEE PROGRAMS IN OTHER JURISDICTIONS

Currently, the City of Oakland does not collect transportation related impact fees for new development, although the city does charge fees for other purposes, such as affordable housing. For purposes of information and comparison, Tables A-1 and A-2 summarize citywide development fees and transportation related development fees in other Northern California jurisdictions.

TABLE A-1 TOTAL IMPACT FEES ¹											
City Single Family Dwelling Unit Dwelling Unit General Office ² Restaurant ² (per ksf) Alameda \$3 229 \$2 644 \$3.378 \$3.485											
Alameda	\$3,229	\$2,644	\$3,378	\$3,485	\$3,485						
Berkeley	\$4,695	\$1,947	\$12,253	\$48,910	\$63,541						
Concord	\$27,323	\$26,823	\$6,754	\$8,234	\$8,234						
Emeryville	\$7,239	\$2,643	\$5,370	\$8,624	\$6,923						
Fremont	\$25,049	\$16,938	\$5,975	\$7,732	\$5,903						
Sacramento	\$6,505	\$4,934	\$3,148	\$1,033	\$1,033						
San Francisco	\$23,270	\$23,270	\$22,000	\$10,000	\$12,000						
San Jose	\$26,716	\$24,090	\$14,246	\$3,806	\$3,806						
Average	\$15,503	\$12,911	\$9,140	\$11,478	\$13,116						
Minimum	\$3,229	\$1,947	\$3,148	\$1,033	\$1,033						
Maximum	\$27,323	\$26,823	\$22,000	\$48,910	\$63,541						

Notes:

Source: Fehr & Peers and HQE, Inc, March 2006.

Total impact fee includes transportation impact fee and other development fees for parks, affordable housing, child care, sewer, drainage, fire, public facilities, etc. (building permit and plan check fees are excluded, as are fees collected by school districts or other outside agencies).

^{2.} Calculation based on gross floor area.

TABLE A-2
TRANSPORTATION IMPACT FEES

				<u> </u>		
City	Single Family Dwelling Unit	Multi-Family Dwelling Unit	General Office ¹ (per ksf)	Restaurant ¹ (per ksf)	Retail ¹ (per ksf)	
Alameda ²	\$1,128	\$866	\$3,040	\$3,140	\$3,140	
Berkeley	\$4,695	\$1,947	\$7,253	\$43,910	\$58,541	
Concord	\$2,588	\$2,088	\$5,920	\$7,400	\$7,400	
Emeryville	\$1,976	\$1,384	\$1,970	\$5,224	\$3,523	
Fremont	\$2,513	\$1,949	\$5,000	\$6,360	\$5,000	
Sacramento	\$380	\$316	\$318	\$600	\$600	
San Francisco	-	-	\$10,000	\$10,000	\$10,000	
San Jose	\$6,994	\$5,596	\$10,440			
Average	\$2,534	\$1,768	\$5,493	\$9,579	\$11,026	
Minimum	\$380	\$316	\$318	\$600	\$600	
Maximum	\$6,994	\$5,596	\$10,440	\$43,910	\$58,541	

Notes:

- 1. Calculation based on gross floor area.
- 2. City of Alameda Transportation Fee estimated based on discussion with city staff.

Source: Fehr & Peers and HQE, Inc, March 2006.

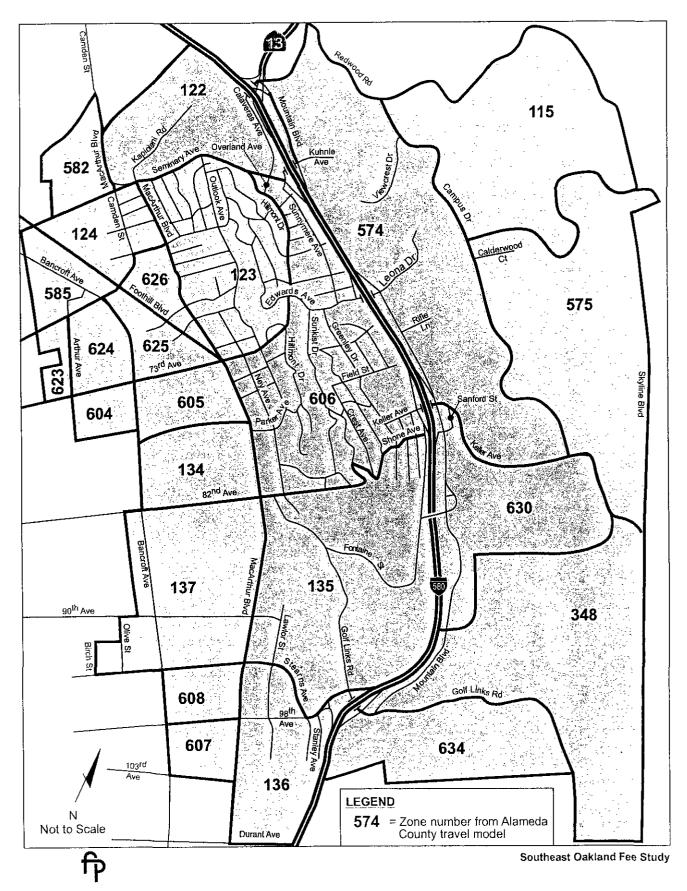
APPENDIX B: TIF AND TIP AREA AND LAND USE PROJECTIONS

TIF and TIP Area

Figure B-1 presents a detailed view of the TIF and TIP area, including the numbers of the TAZs from the Alameda County CMA model that are within the program area.

Review of Land Use Projections

We compared the land use forecasts used in the Leona Quarry EIR with the most recent set available from the City's economic consultant (referred to as the Kaiser EIR dataset). The Leona Quarry EIR dataset projected to the year 2020, while the Kaiser EIR projected to 2025. Comparisons of household and employment totals for the study area from each dataset's respective horizon year showed very small differences of about 1% for households and 1.4% for employment. A summary of these comparisons is provided in Table B-1.


In a zone-by-zone comparison, the larger differences between the two datasets occur primarily in zones 135 and 136, which are in the far southern part of the study area and are unlikely to have much impact on travel through the intersections included in this traffic impact fee. Zone 123, located just south of Seminary Avenue near the Seminary interchange, also shows some increase in households, but that appears to be simply a recalibration of existing conditions; no growth in households is projected between the base year and the horizon year in either of the two datasets.

Based on this review, it was reasonable to conclude that the most recent set of land use projections are not substantially different from the projections used in the Leona Quarry EIR and thus would not substantially change the traffic forecasts in the study area.

Estimate of New Development in TIF Program Area

Existing and future land use projections from the CMA model were used to determine the amount of new development expected in the TIF program area. For each of the traffic analysis zones (TAZs) in the study area, the change in land use from the 2005 to the 2025 CMA model represents the expected amount of new development. Non-residential conversions were made in accordance with the Memorandum on *Revisions to Estuary Plan for Traffic Modeling* from Barry Miller, March 15, 1999 which consolidated non-residential land use projections into the following categories: manufacturing jobs, retail jobs and service jobs. Table B-2 presents the change in land use projected for each TAZ in the TIF program area.

Table B-3 presents more specific land use category conversion factors based on the Barry Miller memorandum that may prove useful in applying the fee to specific development applications.

FEHR & PEERS TRANSPORTATION CONSULTANTS

SOUTHEAST OAKLAND TIF PROGRAM AREA

TABLE B-1

COMPARISON OF LEONA QUARRY EIR AND KAISER EIR LAND USE PROJECTIONS

		Leona Q	uarry EIR	_		Kaise	er EIR _		Difference (Kaiser - Leona)			
TAZ	Total Ho	Total Households Total			Total Ho	useholds	Total Em	ployment	Total Households		Total Employment	
	2005	2020	2005	2020	2005	2025	2005	2025	2005	2020 or 2025	2005	2020 or 2025
115	485	485	647	677	481	502	647	677	-4	17	0	0
122	47	47	878	958	43	43	878	958	-4	-4	0	0
123	871	871	648	696	976	976	548	596	105	105	-100	-100
124	546	546	254	254	514	514	294	294	-32	-32	40	40
134	626	626	63	73	646	665	63	63	20	39	0	-10
135	779	865	296	170	606	606	96	86	-173	-259	-200	-84
136	255	255	540	765	196	364	561	1,058	-59	109	21	293
137	253	253	4	4	319	319	4	4	66	66	0	0
348	1,257	1,257	211	214	1,168	1,168	211	214	-89	-89	0	0
574	1,357	1,754	67	96	1,178	1,667	67	72	-179	-87	0	-24
575	631	631	0	0	707	707	0	0	76	76	0	0
582	494	494	42	42	496	496	42	42	2	2	0	0
585	655	655	37	43	746	777	37	43	91	122	0	0
604	212	212	0	0	222	222	0	0	10	10	0	0
605	563	563	56	76	545	545	56	76	-18	-18	0	0
606	1,134	1,134	30	41	1,090	1,090	30	37	-44	-44	0	-4
607	301	339	51	42	343	350	51	42	42	11	0	0
608	312	312	4	14	352	386	4	7	40	74	0	-7
623	354	354	13	13	317	317	14	14	-37	-37	1	1
624	434	434	99	99	436	436	99	99	2	2	0	0
625	105	162	1,395	1,471	70	128	1,395	1,471	-35	-34	0	0
626	170	170	109	115	182	231	100	100	12	61	-9	-15
630	170	718	188	253	212	766	188	253	42	48	0	0
634	0	0	319	347	1	1	319	347	1	1	0	0
Total	12,011	13,137	5,951	6,463	11,846	13,276	5,704	6,553	-165	139	-247	90

TABLE B-2
FORECASTED GROWTH IN STUDY AREA

		Estimated Growt	th (2005-2025)	1		Estimated Gr	owth in DUEs	(2005-2025) 4	
TAZ	Total	1	Employment ³		Single-Family	Other	Emple	_ ,	
ı	Residential Units ²	Manufacturing	ufacturing Retail Service		Residential	Residential	Retail	Service	Total
115	21	Ö	0	30	8	10	0	9	27
122	0	0	0	80	0	0	0	24	24
123	Ö	0	5	43	0	0	3	13	16
124	0	0	0	0	0	0	0	0	0
134	19	0	0	0	8	8	0	0	16
135	0	0	0	0	0	0	0	0	0
136	168	0	376	121	67	78	210	36	391
137	0	0	0	0	0	0	0	0	0
348	0	0	0	3	0	0	0	1	1
574	489	0	0	5	45	343	0	1	389
575	0	0	Ő.	0	0	0	0	0	0
582	0	0	0	0	0	0	0	0	0
585	31	0	0	.6	12	15	0	2	29
604	0	0	0	0	0	0	0	0	0
605	0	0	10	10	0	0	6	3	9
606	0	0	0	7	0	0	0	2	2
607	7	0	0	0	3	3	0	0	6
608	34	0	0	3	14	15	0	1	30
623	0	0	0	0	0	0	0	0	Ö
624	0	0	0	0	0	0	0	0	0
625	58	0	48	28	23	27	27	8	85
626	49	0	0	0	20	22	0	0	42
630	554	0	30	35	222	256	17	10	505
634	0	0	12	16	0	0	7	5	12
Grand Total	1,430	0	481	387	422	777	270	115	1,584

Notes:

- 1. Growth calculated as the difference between year 2005 and 2025 land use projections from the Kaiser EIR, as shown in Table B-1.
- 2. Total Residential Units were divided into Single-Family and Other Residential as follows: For Leona Quarry development, assumed 19 single-family and 404 other. For all other development areas, assumed 40% single-family and 60% other.
- 3. The CMA model land use category "Other" was divided into the fee program Retail and Service land use categories (50% Retail and 50% Service).
- 4. Growth was converted to DUEs based on the factors provided in Table 6 of the report, then rounded to the nearest whole DUE.

Source: Fehr & Peers, 2006.

TABLE B-3 LAND USE CONVERSION FACTORS

Land Use	Unit	Size/Employee	DUE Category Employment /Employee ¹					
Category	• · · · · · · · · · · · · · · · · · · ·	O.Z.o. Z.i.ipioyee	Manufacturing	Retail	Service			
Office sf		300	0.5	0.25	0.25			
Retail	sf	300	0	0.5	0.5			
Dining	sf	300	0	0.5	0.5			
Entertainment	sf	300	0	0.5	0.5			
Wholesale	sf	750	0	0.75	0.25			
Off-price Retail	sf	750	0	0.75	0.25			
Warehousing	sf	1500	0	0.5	0.5			
Light Industry	sf	750	1	0	0			
Heavy Industry	sf	1000	1	0	0			
Public Use	sf	1000	0	0.5	0.5			

Notes:

Source: Barry Miller, Revisions to Estuary Plan for Traffic Modeling Memorandum, March 15, 1999.

The consolidated CMA model land use category "Other" was divided into the fee program Retail and Service land use categories (50% Retail and 50% Service).

APPENDIX C: DESCRIPTION OF EDWARDS/SEMINARY CORRIDOR STUDY

DESCRIPTION OF EDWARDS/SEMINARY CORRIDOR STUDY

Leona Quarry COA & MMRP 26g and 26h - Preliminary Study Scope

The Leona Quarry COA & MMRP 26g and 26h call for a study of other long-term operational improvements along the Edwards Avenue, 82nd Avenue segment and Seminary Avenue routes, particularly the Foothill Boulevard-82nd Avenue segment and the MacArthur Boulevard-Seminary Avenue segment and including any further intersections improvements in the Edwards Avenue corridor area beyond those identified in the Leona Quarry EIR. The preliminary scope is listed below. Note that a more detailed study scope will need to be developed in the future.

Study Purpose

The purpose of the study is to identify, package and prioritize traffic capacity, safety and calming improvements for the above-referenced roadways and potential cross-connectors under existing and 2025 conditions. The study is needed because several intersections and roadways, including arterial, collector and local streets, are projected to operate at unacceptable levels of service under 2025 conditions. The study must answer the concerns of the community regarding congestion and safety on the area roadways due to through traffic and traffic diversion onto local residential streets between I-580 and the Airport/Coliseum area as well as growth from nearby cumulative development. The recommended improvements will be presented to the City Council to request authorization to incorporate them into a previously approved Traffic Improvement Fee/Traffic Improvement Program, if any.

Study Breadth/Influence Area

The study area includes a local roadway network bounded by I-580 to the north, Foothill Boulevard and MacArthur Boulevard to the south, Seminary Avenue to the west and Golf Links Road/82nd Avenue to the east, and includes potential cross-connectors, such as Sunnymere Avenue, because these are routes that provide access between I-580 and the Coliseum/Airport Area, similar to Edwards Avenue. Study intersections and roadway segments include both signalized and unsignalized intersections as well as local, collector, and arterial roadways as follows:

Edwards Avenue at and between

Sunnymere Avenue
Greenly Drive
Sunkist Drive
Hillmont Drive
Outlook Avenue
Lacey/Ney Avenue

Seminary Avenue at and between

Outlook Avenue MacArthur Boulevard Camden Street Foothill Boulevard

Golf Links Road/82nd Ave at and between Fontaine Street

82nd Avenue
MacArthur Boulevard

Sunnymere Avenue at and between Seminary Avenue and Edwards Avenue

Hillmont Drive at and between Seminary Avenue and 75th Avenue

Outlook Avenue at and between Seminary Avenue and Parker Avenue

Greenly Drive at and between
Edwards Avenue and Keller Avenue

Sunkist Drive at and between Edwards Avenue and 82nd Avenue

Ney Avenue at and between Edwards Avenue and 82nd Avenue

Keller Avenue at and between Fontaine Street and Greenly Drive

Fontaine Street at and between

Keller Avenue Crest Avenue Golf Links Road

MacArthur Boulevard at and between

Seminary Avenue
64th Avenue
68th Avenue
73rd Avenue
75th Avenue
Parker Avenue
Ritchie Street
82nd Avenue

Foothill Boulevard at and between

Seminary Avenue Camden Street 68th Avenue

Camden St at and between

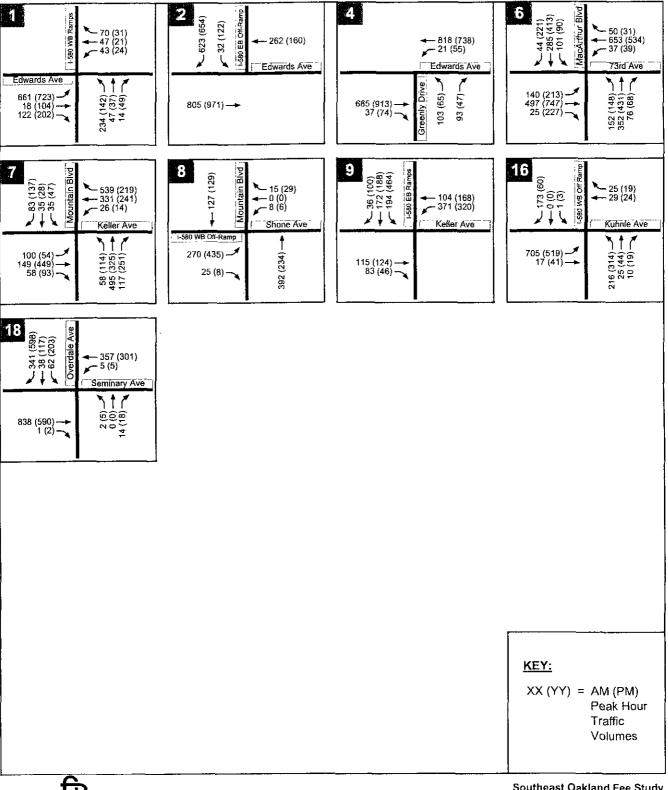
Seminary Avenue 64th Avenue Foothill Boulevard

68th Avenue at and between

Outlook Avenue
MacArthur Boulevard
Foothill Boulevard

64th Avenue at and between

Outlook Avenue MacArthur Boulevard Camden Boulevard Foothill Boulevard


The alternatives to be analyzed include existing and 2025 conditions with and without improvements, including two alternative improvement scenarios, during the a.m. and p.m. peak periods. The measures of effectiveness include level of service, speed, travel time, travel distance, traffic volumes, volume-to-capacity ratio, delay, queue lengths, number of stops, collisions, and benefit/cost ratio.

Study Approach/Model

The community is concerned about through traffic and traffic diversion to local residential streets between I-580 and the Airport/Coliseum area as well as growth from nearby cumulative development. A regional travel demand model would probably not be adequate to estimate traffic diversion on potential cut-through routes on a series of local residential streets because it would not be able to model the various types of traffic control and calming devices along these streets. Analytical Highway Capacity Manual (HCM) methods could estimate the capacity measures of effectiveness; however, they cannot estimate the effect queuing and traffic diversion. A study that uses both HCM analytical techniques and microsimulation techniques would probably best suit the needs of this study. The recommended software that incorporates both techniques is Snychro/SimTraffic.

Final Draft Report – Southeast Oakland Traffic Improvement Fee Study September 2006

APPENDIX D: DETAILED TRAFFIC LEVEL OF SERVICE ANALYSIS WORKSHEETS

FEHR & PEERS

Southeast Oakland Fee Study

FUTURE PEAK HOUR TRAFFIC VOLUMES AT STUDY INTERSECTIONS

	۶		•	•	←	4	1	†	<i>></i>	-	↓	4
Moxement	(FBL)	超		W/BL/	AMMENT.	WER	MBL	NENT	NBR:	(S)	(SE/II	SER
Lane Configurations Sign Control	ሻ	₽ Free			र्ध Free	7	ሻ	1 ≽ Stop			Stop	
Grade		0%			0%			0%			0%	
Volume (veh/h)	661	18	122	43	47	70	234	47	14	0	0	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	734	20	136	48	52	78	260	52	16	0	0	0
Pedestrians Lane Width (ft)								•				
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)								•				
Median type								None			None	
Median storage veh)		1252										
Upstream signal (ft) pX, platoon unblocked		1252										
vC, conflicting volume	130			156			1704	1782	88	1678	1772	52
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	•					-	÷					
vCu, unblocked vol	130			156			1704	1782	88	1678	1772	52
tC, single (s) tC, 2 stage (s)	4.1		•	4.1			7.1	6.5	6.2	7.1	6.5	6.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	50			97			0	0	98	0	100	100
cM capacity (veh/h)	1455			1425			43	39	971.	. 0	40	1015
Diexiton, Lencet		. jel£(2).	WB il	W(33%)	486941	181812			د در			
Volume Total	734	156	100	78	260	68						
Volume Left Volume Right	734 0	0 136	48 0	0 78	260 0	0 16						
cSH	1455	1700	1425	1700	43	50						
Volume to Capacity	0.50	0.09	0.03	0.05	6.12	1.35						
Queue Length 95th (ft)	74	0	3	0	Em	156						
Control Delay (s)	10.0	0.0	3.8	0.0	Err	377.8						
Lane LOS	Α		A	_	F	F						
Approach Delay (s) Approach LOS	8.2		2.1	Ł	3009.5 F							
Intersection Summerly	g sa a gerilla.	Te area	niste nervisia, sa	Color de Herriga	, (2) (V)O :			. N. 12 18 11	Jan 1964 Berlin	12.00		(Januarya Saring)
Average Delay	الأستغاسية سلا		1886.7	هـ المعالمة				ودائل فيها المتحرف عالي			alak seperakan dari	a straining all
Intersection Capacity Ut	ilization		62.9%	IC	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

	▶	-	←	•	-	4						
jjetetjetene			William	WER	SBL.	(A)			VALLA WAKA		and a second	
Lane Configurations		↑	_ †		*5	#		· ·				
Sign Control Grade		Free 0%	Free 0%		Stop 0%							
Volume (veh/h)	0	805	262	0	32	623						
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90						
Hourly flow rate (vph) Pedestrians	0	894	291	0	36	692						
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage Right turn flare (veh)												
Median type					None							
Median storage veh)		000										
Upstream signal (ft) pX, platoon unblocked		936	•		0.75							
vC, conflicting volume	291				1186	291						
vC1, stage 1 conf vol												
vC2, stage 2 conf vol vCu, unblocked vol	291				1247	291	•		-			
tC, single (s)	4.1				6.4	6.2			2			
tC, 2 stage (s) tF (s)	2.2				3.5	3.3						
p0 queue free %	100				75	3.3 7						
cM capacity (veh/h)	1271				144	748				. · ·		
Dinasiton, Lane,#	清明影利。	WAND W	SB1	(S)B) 2					Carlo Hiller			
Volume Total	894	291	36 36	692								
Volume Left Volume Right	0 0	0 0	0	0 69 2								
cSH	1700	1700	144	748								
Volume to Capacity	0.53	0.17 0	0.25 23	0.93 325								
Queue Length 95th (ft) Control Delay (s)	0 0.0	0.0	38.1	40.8								
Lane LOS			E	E								
Approach Delay (s) Approach LOS	0.0	0.0	40.7 E									
	Contraction	No. of the second	alter of Jackson	1 0 4 M C	To the second second	berer arst s			or Carrent Land		- 12 and 12	G √ jag
intersection Summary. Average Delay	<u></u>		15.5			essa in a madama a lin	n Derin islame erkadean sidaan					
Intersection Capacity Utilization 59.0%			IC	CU Leve	l of Sen	/ice		В		•	•	
Analysis Period (min)			15									

		•	1	-	1	<i>></i>				
Mexaniant			W.BJL	WET		NEEK.		1 4 4 M		
Lane Configurations	4			4	¥f					
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Total Lost time (s)	4.0			4.0	4.0					
Lane Util. Factor	1.00			1.00	1.00					
Frt	0.99			1.00	0.94					
Flt Protected	1.00			1.00	0.97					
Satd. Flow (prot)	1850			1860	1699					
Fit Permitted	1.00			0.98	0.97					
Satd. Flow (perm)	1850			1818	1699					
Volume (vph)	685	37	21	818	103	93				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90				
Adj. Flow (vph)	761	41	23	909	114	103				
RTOR Reduction (vph)	2	0	0	0	49	0				
Lane Group Flow (vph)	800	0	0	932	168	0				
Turn Type			pm+pt							
Protected Phases	. 4		· 3	. 8	2					
Permitted Phases			8							
Actuated Green, G (s)	45.1			45.1	11.0					
Effective Green, g (s)	46.1			46.1	12.0					
Actuated g/C Ratio	0.70			0.70	0.18					
Clearance Time (s)	5.0			5.0	5.0					
Vehicle Extension (s)	3.0			3.0	3.0					
Lane Grp Cap (vph)	1290			1268	308				******	
v/s Ratio Prot	0.43				c0.10					
v/s Ratio Perm				c0.51						
v/c Ratio	0.62			0.74	0.55					
Uniform Delay, d1	5.3			6.2	24.6					
Progression Factor	1.00			1.00	1.00					
Incremental Delay, d2	2.2			2.2	2.0					
Delay (s)	7.6			8.5	26.5					
Level of Service	Α			Α	С					
Approach Delay (s)	7.6			8.5	26.5					
Approach LOS	Α			Α	С					
intersection Summerly	en gregori							\$ 60 KM		
HCM Average Control D			10.1	-	ICM Lev	el of Service	all de l'anniel de Louis (<u>Es</u> le plans) a	В	k d die er gebeut voor de de er een de de er een de de de er een de de er een de een de een de een de een de e Gebeure	
HCM Volume to Capacit			0.70					-		
Actuated Cycle Length (•		66.1	S	Sum of Io	ost time (s)		8.0		
Intersection Capacity Ut			78.0%			el of Service		D		
Analysis Period (min)			15							
c Critical Lane Group										

	۶	→	•	•	←	•	4	†	/	-	↓	1
Movennent.	(E)			-AW/BL-	AWBIT.	WER	TANBL		NER		ે ઊંચા	SBR
Lane Configurations Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt	1900 4.0 1.00 1.00	1900 4.0 1.00 1.00	1900 4.0 1.00 0.85	1900 4.0 1.00 1.00	1900 4.0 1.00 0.99	1900	1900	415 1900 4.0 0.95 0.98	1900	1900	47 1900 4.0 0.95 1.00	1900 4.0 1.00 0.85
Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm)	0.95 1770 0.95 1770	1.00 1863 1.00 1863	1.00 1583 1.00 1583	0.95 1770 0.95 1770	1.00 1843 1.00 1843			0.99 3425 0.99 3425			0.99 3494 0.99 3494	1.00 1583 1.00 1583
Volume (vph) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph)	140 0.90 156 0 156	497 0.90 552 0 552	25 0.90 28 18 10	37 0.90 41 0 41	653 0.90 726 2 780	50 0.90 56 0	152 0.90 169 0	352 0.90 391 9 635	76 0.90 84 0	101 0.90 112 0	285 0.90 317 0 429	44 0.90 49 0 49
Turn Type Protected Phases Permitted Phases	Prot 7	4	Perm 4	Prot . 3	8		Split 2	2		Split 6	6	Free Free
Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s)	5.0 6.0 0.05 5.0 3.0	45.5 46.5 0.35 5.0 3.0	45.5 46.5 0.35 5.0 3.0	32.5 33.5 0.26 5.0 3.0	73.0 74.0 0.56 5.0 3.0			18.0 19.0 0.15 5.0 3.0			15.0 16.0 0.12 5.0 3.0	131.0 131.0 1.00
Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio	81 c0.09	661 c0.30	562	453 0.02 0.09	1041 c0.42			497 c0.19			427 c0.12	1583 0.03 0.03
Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s)	62.5 1.00 458.7 521.2	38.7 1.00 9.0 47.7	27.4 1.00 0.0 27.4	37.1 1.00 0.1 37.2	21.5 1.00 4.9 26.4			56.0 1.00 139.5 195.5			57.5 1.00 44.7 102.2	0.03 0.0 1.00 0.0 0.0
Level of Service Approach Delay (s) Approach LOS	F	D 147.3 F	C	D	27.0 C	ere yar war har hasan j	staine and west	F 195.5 F		odnika teory iska	91.7 F	А
Intersaction Summary HCM Average Control Delay HCM Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) c Critical Lane Group				5	HCM Leve	ost time	(s)	Antonio Maria	F 12.0 E			

	*	-	•	•	4	*	4	†	/	-	ļ	1
Mexicani			(EBR	/Wa)L	AWBIT.		, NBL	MBT.	NBR)	(313)L,	SET	SBR
Lane Configurations Sign Control	_	♣ Stop			स Stop	7		41. Stop			सी Stop	7
Volume (vph)	100	149	58	26	331	539	58	495	117	35	35	83
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	111	166	64	29	368	599	64	550	130	39	39	92
Dingo lom, Lemosti	(E) (1)	W/B (I	A/W/(m)(1/p)	孙昌介	NEW2	(SIE) (1)	(G) (B) (F)					
Volume Total (vph)	341	397	599	339	405	78	92		<u>- </u>			
Volume Left (vph)	111	29	0	64	0	39	0					
Volume Right (vph)	64	0	599	0	130	0	92					
Hadj (s)	-0.01	0.07	-0.67	0.13	-0.19	0.28	-0.67					
Departure Headway (s)	8.2	8.2	7.5	8.3	0.8	9.7	8.7					
Degree Utilization, x	0.78	0.91	1.25	0.78	0.90	0.21	0.22					
Capacity (veh/h)	430	431	487	428	439	352	388					
Control Delay (s)	34.9	51.0	150.0	33.9	47.8	14.0	13.1					
Approach Delay (s)	34.9	110.6		41.5		13.5						
Approach LOS	, D ,	F		Ε.	-	В			÷			
interscollon Summing					and the second				e da Collando		400000	
Delay			68.9°	:								
HCM Level of Service			F									
Intersection Capacity Uti	ilization	1	79.4%	16	CU Leve	el of Ser	vice		Đ			
Analysis Period (min)			15									

	۶	→	•	•	-	•	4	†	<i>></i>	\	↓	1
Movement Lane Configurations	EO	est.		WE)L	-WB∏ -	Wer	NBI.	**************************************		<u>. 55</u> L.	(SB) / ↑	-SER
Sign Control Grade		Stop 0%			Stop 0%			Free 0%			Free 0%	
Volume (veh/h)	270	0	25	8	0	15	0	392	0	0	127	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	300	0	28 -	9	0	17	0	436	0	0	141	0
Pedestrians Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)		9 1			Maria							
Median type Median storage veh)		None			None							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	593	577	141	604	577	436	141			436		
vC1, stage 1 conf vol vC2, stage 2 conf vol												
vCu, unblocked vol	593	577	141	604	577	436	141			436		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	٥.	4.0		۵.۲	4.0:					0.0		
tF (s) p0 queue free %	3.5 26	4.0 100	3.3 97	3.5 98	4.0 100	3.3 97	2.2 100			2.2 100		
cM capacity (veh/h)	406	428	907	397	428	621	1442			1124		
Dijezdiom, kemovii		- 图32	(3 M/V)	NBA	(C) (B)	10 WATE	50 W 100		ing de la companya d La companya de la co	versity of the	Salaka sa	
Volume Total	300	28	26	436	141	المستنكس أوا ففات	. " <u>گانده استفانت "</u>	:: <u> </u>		التكانييكسية. -	ينمي مقتضي المتحدث	
Volume Left	300	0	9	0	0							
Volume Right	0	28	17	0	0							
cSH	406	907	519	1700	1700							
Volume to Capacity Queue Length 95th (ft)	0.74 147	0.03 2	0.05 4	0.26 0	0.08 0							
Control Delay (s)	35.1	9.1	12.3	0.0	0.0							
Lane LOS	Ε	Α	В									
Approach Delay (s)	32.9		12.3	0.0	0.0							
Approach LOS	D		В									
Meisedioushumeiv		مراجع المستعدد المستعدد		عاد عاد المحاد المحاد	ر داده داده داده داده داده داده داده داد	and the last care		د در از				
Average Delay Intersection Capacity Ut	ilization		11.9 48.9%	17	CU Leve	d of Co-	vice		Λ			
Analysis Period (min)	m∠atiV∏	•	40.976	10	o reve	:i UI 381	VICE		Α			

	•	→	•	•	←	*	4	†	1	\	↓	4
(VIO)VEIRFEIRIT	语言UL.	ESI!		WWB]L,	WBTC	W/SP	WBT.	AN BIT	NER.	SEL:	(S)BIII	SER
Lane Configurations		1 >		<u>J</u>	<u></u>						414	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	0	115	83	371	104	0	0	0	0	194	172	36
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	128	92	412	116	0	0	0	0	216	191	40
Direction, Listorett		WAS 1	\ ₩ (8) 92	(SE) 1	-S:32		(maxi)					
Volume Total (vph)	220	412	116	311	136							
Volume Left (vph)	0	412	0	216	0							
Volume Right (vph)	92	0	0	0	40							
Hadj (s)	-0.22	0.53	0.03	0.38	-0.17							
Departure Headway (s)	6.6	6.9	6.4	7.1	6.5							
Degree Utilization, x	0.40	0.79	0.21	0.61	0.25							
Capacity (veh/h)	521	513	544	486	527							
Control Delay (s)	13.9	30.0	9.8	19.5	10.5							
Approach Delay (s)	13.9	25.6		16.7								
Approach LOS	В	D		C,								
ministerion Summerly	1975 W					Same and the same	akan di					
Delay			20.1				5.5		***			
HCM Level of Service			С									
Intersection Capacity Ut	ilization	- 1	53.2%	10	CU Leve	l of Ser	vice		Α			
Analysis Period (min)			15									

	۶		*	•	4 —	*	4	†	~	1	†	1
Movement Lane Configurations Sign Control Grade	<u> </u>	Free 0%	HEBR.	AMBIL.	Free	WER	NEL.	Stop	NDR.	_SEL	Stop 0%	SBR
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent-Blockage Right turn flare (veh)	705 0.90 783	17 0.90 19	0 0.90 - 0	0 0.90 0	29 0.90 32	25 0.90 28	216 0.90 240	25 0.90 28	10 0.90 11	0.90 1	0 0.90 0	173 0.90 192
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol	60			19			1824	None 1646	19	1657	None 1632	. 46
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s)	60 4.1			19 4.1			1824 7.1	1646 6.5	19 6.2	1657 7.1	1632 6.5	46 6.2
tF (s) p0 queue free % cM capacity (veh/h)	2.2 49 1544			2.2 100 1598			3.5 0 29	4.0 43 49	3.3 99 1059	3.5 96 27	4.0 100 50	3.3 81 1023
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	783 783 0 1544 0.51 75 9.7 A 9.5	19 0 0 1700 0.01 0 0.00	W/B 1 60 - 0 28 1700 0.04 0 0.0	240 240 0 29 8.28 Err Err F 6620.7	39 0 11 67 0.58 61 115.0 F	193 1 192 844 0.23 22 10.5 B						
Interescilen Summany Average Delay Intersection Capacity Ut Analysis Period (min)	ilization		1808.9 78.5% 15	I	CU Leve	el of Ser	vice		D			

	٦	→	*	•	←	•	4	†	/	1	+	4
Moverneint Lane Configurations Sign Control Grade		हा। सीन Free 0%	HE BR	WEL	₩ <mark>₽</mark> 41 Free 0%		MEL	ANETI ♣ Stop 0%	NER!	(48) <u>.</u>	SETE 4 Stop 0%	SBR 7
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)	0 0.90 0	838 0.90 931	1 0.90 1	5 0.90 6	357 0.90 397	0 0.90 0	2 0.90 2	0 0.90 0	14 0.90 16	62 0.90 69		341 0.90 379
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol	397			932			1541	None 1339	466	889	None 1340	198
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s)	397 4.1			932 4.1			1541 7.5	1339 - 6.5	466 6.9	889 7.5	1340 6.5	198 6.9
tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1158			2.2 99 730			3.5 93 33	4.0 100 150	3.3 97 543	3.5 70 230	4.0 72 150	3.3 53 810
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	466 0 0 1158 0.00 0 0.0	467 0 1 1700 0.27 0 0.0	204 6 0 730 0.01 1 0.4 A 0.2	198 0 0 1700 0.12 0 0.0	18 18 18 18 18 18 18 18 18 18 18 18 18 1	111 69 0 191 0.58 79 47.1 E 21.0	379 0 379 810 0.47 63 13.3 B					
Average Delay Intersection Capacity Ut Analysis Period (min)		- ·	5.9 44.5% 15	IC	CU Leve	l of Ser	vice	ness altered us	А		and the second second	

	۶		*	•	←	•	4	1	-	-	ļ	4
Movement Lane Configurations Sign Control Grade	i de la	1. 1. 1. Free 0%	E PAR	AW/BIL.	aWBII र्स Free 0%	Wester.	ANBI.	NBII Stop 0%	48 15 15}	ાકછ	Stop 0%	SBR
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage	723 0.90 803	104 0.90 116	202 0.90 224	24 0.90 27	21 0.90 23	31 0.90 34	142 0.90 158	37 0.90 41	49 0.90 54	0 0.90 0	0 0.90 0	0 0.90 0
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft)		1252						None			None	
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	58			340			1911	1946	228	1874	2023	23
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	58 4.1			340 4.1		, .	1911 7.1	1946 6.5	228 6.2	1874 7.1	2023 6.5	23 6.2
tF (s) p0 queue free % cM capacity (veh/h)	2.2 48 1546		. · 	2.2 98 1219	+ <u>-</u>	·	3.5 0 30	4.0 0 30	3.3 93 812	3.5 0 0	4.0 100 27	3.3 100 1053
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	803 803 0 1546 0.52 78 9.8 A 6.9	340 0 224 1700 0.20 0 0.0	50 27 0 1219 0.02 2 4.4 A 2.6	34 0 34 1700 0.02 0 0.0	158 158 158 0 30 5.26 Err Err F 5363.1	96 0 54 67 1.42 200 359.5 F						
Intersection Summary Average Delay Intersection Capacity Ut Analysis Period (min)			1093.8 61.3% 15	!(CU Leve	el of Ser	vice		В			

	*	-	←	•	-	4	
Mowannani			\ W B }	WER	-ISBL		
Lane Configurations		†	†		7	T.	
Sign Control		Free	Free		Stop		
Grade		0%	0%	0	0%	CE (
Volume (veh/h) Peak Hour Factor	0.90	971 0.90	160 0.90	0 0.90	122 0.90	654 0.90	
Hourly flow rate (vph)	0.50	1079	178	0.90	136	727	
Pedestrians	Ū	10.0	,,,	•	,00		
Lane Width (ft)			•				
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)					Nana		
Median type Median storage veh)					None		
Upstream signal (ft)		936					
pX, platoon unblocked		000			0.77		
vC, conflicting volume	178				1257	178	
vC1, stage 1 conf vol							•
vC2, stage 2 conf vol	4=-						
vCu, unblocked vol	178				1335	178	
tC, single (s) tC, 2 stage (s)	4.1		=		6.4	6.2	
tF (s)	2.2	٠.		-	3.5	3.3	
p0 queue free %	100	-			0	16	
cM capacity (veh/h)	1398				130	865	
Dineration, the house	(<u>m</u> [6] 4	W/B (i	(SISA)			10.00 W.V	
Volume Total	1079	178	136	727	٠.		
Volume Left	0	0	136	0			
Volume Right	1700	1700	120	727			
cSH Volume to Capacity	1700 0.63	1700 0.10	130 1.05	865 0.84			
Queue Length 95th (ft)	0.03	0.10	188	250			
Control Delay (s)	0.0	0.0	157.8	26.7			
Lane LOS			F	D			
Approach Delay (s)	0.0	0.0	47.3				
Approach LOS			E				
lificies editor subminery	ist suite	سندن ومعتد عددتاني		Townson			
Average Delay	*** **		19.3	. =			
Intersection Capacity Ut	ilization		64.5%	IC	CU Leve	l of Ser	vice C
Analysis Period (min)			15				,

	→	•	*	4	1	<i>></i>				
Mewajarani	IBBII	1 32 5	WARIE			ANUR:				
Lane Configurations	1			4	¥	1000				
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Total Lost time (s)	4.0			4.0	4.0					
Lane Util. Factor	1.00			1.00	1.00					
Frt	0.99			1.00	0.94					
Flt Protected	1.00			1.00	0.97					
Satd. Flow (prot)	1844			1856	1708					
Fit Permitted	1.00			0.80	0.97					
Satd. Flow (perm)	1844	74		1496	1708			<u> </u>		
Volume (vph)	913	74	55	738	65	47				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90				
Adj. Flow (vph)	1014	82	61	820	72	52				
RTOR Reduction (vph)	2	0	0	0	22	0				
Lane Group Flow (vph)	1094_	0	0	881	102	0			- <u></u>	
Turn Type	. 4		pm+pt	0	2					
Protected Phases	4		3	8	2					
Permitted Phases	94.1		8	94.1	11.7					
Actuated Green, G (s)	94.1 95.1			9 4 .1 95.1	12.7					
Effective Green, g (s) Actuated g/C Ratio	0.82			0.82	0.11					
Clearance Time (s)	5.0			5.0	5.0		-		-	
Vehicle Extension (s)	3.0			3.0	3.0					
Lane Grp Cap (vph)	1514			1229	187					
v/s Ratio Prot	c0.59			1220	c0.06					
v/s Ratio Perm	00.00			0.59	00.00					
v/c Ratio	0.72			0.72	0.54				1.	
Uniform Delay, d1	4.6			4.5	48.8					
Progression Factor	1.00			1.00	1.00					
Incremental Delay, d2	1.7			2.0	3.2			•		
Delay (s)	6.3			6.5	52.0					
Level of Service	Α			Α	D					
Approach Delay (s)	6.3			6.5	52.0					
Approach LOS	Α			Α	D					
hiji alesető kelői felülű nindalgy	9.78.67 S					· 图 18 18 18 18 18 18 18 18 18 18 18 18 18				
HCM Average Control D			9.1	1	ICM Lev	vel of S	ervice	A	ender og det en de som en	Les Marintenania
HCM Volume to Capaci			0.70	'			2. 7700	, ,		
Actuated Cycle Length (•		115.8	S	sum of le	ost time	(s)	8.0		
Intersection Capacity Ut			97.3%		CU Leve			F		
Analysis Period (min)			15					-		
c Critical Lane Group										
•										

	٠	→	•	•	←	*	4	†	<i>></i>	>	ļ	4
XIOVSTITE III	EBL.	HBIT		\W/ : }L	AMEST.	WDR.	NEL.	NEI I	NEE!	ા	(S)	SER
Lane Configurations	ሻ	^	7	ሻ	^			414		**************************************	414	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1848			3444			3508	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	<u> 1770</u>	1863	1583	1770	1848			3444			3508	1583
Volume (vph)	213	747	227	39	534	31	148	431	68	90	413	221
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	237	830	252	43	593	34	164	479	76	100	459	246
RTOR Reduction (vph)	0	0	89	0	2	0	0	6	0	0	0	0
Lane Group Flow (vph)	237	830	163	43	625	0	0	713	0	0	559	246
Turn Type	Prot		Perm	Prot	_		Split	_		Split	_	Free
Protected Phases	7	4		3	. 8		. 2	2		6	6	
Permitted Phases	44.0	00.7	4	7.0				00.0			40.0	Free
Actuated Green, G (s)	14.0	69.7	69.7	7.3	63.0			26.0			18.0	141.0
Effective Green, g (s)	15.0	70.7	70.7	8.3	64.0			27.0			19.0	141.0
Actuated g/C Ratio	0.11	0.50	0.50	0.06	0.45			0.19			0.13	1.00
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		····	3.0			3.0	4500
Lane Grp Cap (vph)	188	934	794	104	839			659			473	1583
v/s Ratio Prot	c0.13	c0.45	0.40	0.02	c0.34			c0.21		•	c0.16	0.40
v/s Ratio Perm v/c Ratio	1.00	0.00	0.10	0.41	0.75			4.00			4 40	0.16
•	1.26	0.89 31.6	0.20 19.5	64.0	31.8			1.08			1.18	0.16
Uniform Delay, d1	63.0	1.00	1.00	1.00	1.00			57.0			61.0	0.0
Progression Factor	1.00 152.8	10.3	0.1	2.7	6.0			1.00 59.1			1.00 101.7	1.00 0.2
Incremental Delay, d2	215.8	41.9	19.7	66.7	37.7			116.1			162.7	0.2
Delay (s) Level of Service	Z13.0	41.9 D	19.7 B	00.7 E	37.7 D			F			102.7 F	0.2 A
Approach Delay (s)	'	68.9	b	_	39.6			116.1			113.1	A
Approach LOS		00. <i>5</i>			55.0 D			F			F	
. ,								1			'	
hicuseoildh Sumhishy		age utage	والمستوالية	arang and a second and a	b case our business sa		يرحند دد دولانا		د قت ب درسته حب ما	nema de 2		
HCM Average Control D			83.1	1	ICM Lev	el of Se	ervice		F			
HCM Volume to Capacit			0.98									
Actuated Cycle Length (141.0		Sum of lo				12.0			
Intersection Capacity Ut	ilization	Ì	88.4%	10	CU Leve	el of Ser	vice		E			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	\rightarrow	•	←	*	4	†	-	-	ļ	4
ineviewet.				WELL	W/B/ii	WER	报剧。	ANENT.		SBL	ં(કોરો)	SBR
Lane Configurations		-₩	••		€	7		414			4	7
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	54	449	93	14	241	219	114	325	251	47	28	137
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	60	499	103	16	268	243	127	361	279	52	31	152
Direction, Leaners	1000年	₩B) (I	WMB 22	NE) (I	NB 85	(SE) 4	(S) B) /2)			J 3075		
Volume Total (vph)	662	283	243	307	459	83	152		_		<u> </u>	
Volume Left (vph)	60	16·	0	127	0	52	0					
Volume Right (vph)	103	0	243	0	279	0	152					
Hadj (s)	-0.04	0.06	-0.67	0.24	-0.39	0.35	-0.67					
Departure Headway (s)	8.2	8.7	8.0	8.5	7.9	9.6	8.7					
Degree Utilization, x	1.51	0.68	0.54	0.73	1.01	0.22	0.37					
Capacity (veh/h)	441	405	437	415	459	365	407					
Control Delay (s)	264.8	27.3	18.7	29.9	71.6	14.2	15.4					
Approach Delay (s)	264.8	23.3		54.9		14.9						
Approach LOS	F	C	. :	· F		В	,	٠.			\-	
initerecojon Summirery												CLEVE V
Delay			106.4							` .	*****	
HCM Level of Service			F							•		
Intersection Capacity Utilization			83.5%	% ICU Level of Service E					Ε			
Analysis Period (min)			15	5								

	۶		*	•	←	•	•	†	<i>></i>	-	 	1
Memmeni	(EB)			.WBL	WET		44E)r	ANBII	NEW.	82		SBR
Lane Configurations	ሻ		7		_ ↔			_ 1			↑	
Sign Control		Stop			Stop			Free		-	Free	
Grade	405	0%	•	0	0%	00	0	0%	0	•	0%	•
Volume (veh/h)	435	. 0	8	6	0	29	0	234	0	0	129	0
Peak Hour Factor	0.90	0.90 0	0.90 9	0.90 7	0.90 0	0.90 32	0.90 0	0.90 260	0.90 0	0.90 0	0.90 143	0.90 0
Hourly flow rate (vph) Pedestrians	483	U	9	′	U	32	U	200	U	U	143	U
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None						•	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked	400	400	140	440	400	260	1.49			260		
vC, conflicting volume vC1, stage 1 conf vol	436	403	143	412	403	260	. 143	-		260		
vC1, stage 1 conf vol				-					_			
vCu, unblocked vol	436	403	143	412	403	260	143			260		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)								*				
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2	-		2.2		
p0 queue free %	5	100	99	99	100	96	100			100	_	
cM capacity (veh/h)	509	536	904	545	536	779	1439		•	1304		
Direxolloin, Leine	層點 [].	(F) (7)	W/B (1	NE AIN	(alg)				j (0.94			
Volume Total	483	9		260	143		<i>-</i>					
Volume Left	483	0	7	0	0							
Volume Right	0	9	32	1700	. 0							
cSH	509	904 0.01	725	1700 0.15	1700 0.08							
Volume to Capacity Queue Length 95th (ft)	0.95 299	0.01	0.05 4	0.15	0.08							
Control Delay (s)	56.9	9.0	10.2	0.0	0.0							
Lane LOS	50.5 F	3.0 A	В	0.0	0.0							
Approach Delay (s)	56.0		10.2	0.0	0.0							
Approach LOS	F		В									
Inicial section (Statements)												
Average Delay	and the second s		29.9	The second secon		and the second section of the second			er man de komende en er sekse 1 å 1 manerer sede		And the second second second	and the second second
Intersection Capacity Utilization		1	49.7%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

	ၨ	→	*	•	←	•	4	†	/	-	↓	4
Miowelline .	TERL	[[B]]		WBL	- Megal	WER :	料图	NEU	MBR)	SIBLE:	ાહિજ	SBR
Lane Configurations Sign Control Volume (vph) Peak Hour Factor	0 0.90	\$top 124 0.90	46 0.90	320 0.90	\$top 168 0.90	0 0.90	0 0.90	Stop 0 0.90	0 0.90	464 0.90	♣1⊅ Stop 188 0.90	100 0.90
Hourly flow rate (vph)	0.50	138	51	356	187	0.50	0.50	0.50	0.90	516	209	111
Differentian, il existenti	E 5 1	₩ B1	WB2		(SE) (2)		i gangrana				est de la gra	S 1976
Volume Total (vph) Volume Left (vph) Volume Right (vph) Hadj (s) Departure Headway (s) Degree Utilization, x Capacity (veh/h) Control Delay (s) Approach Delay (s) Approach LOS	189 0 51 -0.13 7.2 0.38 492 14.5 14.5	356 356 0 0.53 7.6 0.75 472 28.4 23.1	187 0 0 0.03 7.1 0.37 503 12.9	620 516 0 0.45 7.2 1.24 507 147.3 112.4	216 0 111 -0.33 6.4 0.39 550 12.2							
intersecution styronominy		3 X 6			and the second second					ŠŽIJE I		
Delay HCM Level of Service Intersection Capacity Uti Analysis Period (min)	llization	(69.7 F 62.8%	(C	CU Leve	l of Serv	rice		В	•		

	۶		*	•	+	4	4	1	<i>></i>	/	1	4
Movement Lane Configurations Sign Control	T P	↑ Free	EDIN	-\MEIL	₩₽¶ f → Free 0%	WER.	ANEU T	Stop	ANDIR:	- RISIL)	↔ Stop	Ser
Grade Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s)	519 0.90 577	0% 41 0.90 46	0 0.90 0	0 0.90 0	24 0.90 27	19 0.90 21	314 0.90 349	0% 44 0.90 49	19 0.90 21	3 0.90 3	0% 0 0.90 0	60 0.90 67
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked								None			None	
vC, conflicting volume vC1, stage 1 conf vol	48		٠.	46			1303	1247	46	1282	1236	37
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s)	48 4.1			46 4.1			1303 7.1	1247 6.5	46 6.2	1282 7.1	1236 6.5	37 6.2
tF (s) p0 queue free % cM capacity (veh/h)	2.2 63 1559			2.2 100 1562	٠		3.5 0 92	4.0 55 109	3.3 98 1024	3.5 95 66	4.0 100 111	3.3 94 1035
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	577 577 0 1559 0.37 43 8.7 A 8.0	46 0 0 1700 0.03 0 0.0	48 0 21 1700 0.03 0 0.0	349 349 0 92 3.81 Err Err F 3336.2	70 0 21 150 0.47 54 48.6 E	70 3 67 611 0.11 10 11.7 B 11.7						
Intersection Summary Average Delay Intersection Capacity Ut Analysis Period (min)			3018.2 66.1% 15	IC	CU Leve	el of Ser	vice		C	<u> </u>		

-	•		*	•	←	*	•	†	1	/		4
Movement Lane Configurations Sign Control Grade		E BII ብ ት Free 0%		WBL.	₩₿ 1 ५₽ Free 0%		NBL.	↔ Stop		:왕위: <u>-</u>	SEII 4 Stop	Ser 7
Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s)	0 0.90 0	590 0.90 656	2 0.90 2	5 0.90 6	301 0.90 334	0 0.90 0	5 0.90 6	0% 0 0.90 0	18 0.90 20	203 0.90 226	0% 117 0.90 130	598 0.90 664
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked								None			None	
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	334			658	-		1564	1002	329	693	1003	167
vCu, unblocked vol tC, single (s)	334 4.1	÷	-	658 4.1			1564 7.5	1002 6.5	32 9 6.9	693 . 7.5	1003 6.5	167 6.9
tC, 2 stage (s) tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1222			2.2 99 926			3.5 40 9	4.0 100 240	3.3 97 667	3.5 29 318	4.0 46 239	3.3 22 848
Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	328 0 0 1222 0.00 0 0.0	330 0 2 1700 0.19 0 0.0	926 0.01 0 0.3 A 0.2	167 0 0 1700 0.10 0 0.0	26 6 20 41 0.63 57 189.9 F 189.9	356 226 0 284 1.25 422 176.3 F 76.3	664 0 664 848 0.78 201 22.8 C		atrono e e e			
intersection Summary Average Delay Intersection Capacity Ut Analysis Period (min)			40.5 58.8% 15		CU Leve	el of Ser	vice		В			d zwe w zwen . M

	۶	→	•	•	4-	4	4	†	<i>></i>	1		4
Menteyolk		/[3 87]/		W/BIL	wenr.		ANBIL.	AMBAI)	MAISIR	(S)	338	SBR
Lane Configurations	14.54	î,			4	f	7	†	ř			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	0.97	1.00			1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.87			1.00	0.85	1.00	1.00	0.85			
FIt Protected	0.95	1.00			0.98	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	3433	1619			1819	1583	1770	1863	1583			
FIt Permitted	0.95	1.00			0.98	1.00	0.95	1.00	1.00			
Satd. Flow (perm)	3433	1619	···		1819	1583	1770	1863	1583			
Volume (vph)	661	18	122	43	47	70	234	47	14	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	734	20	136	48	52	78	260	52	16	0	0	0
RTOR Reduction (vph)	0	62	0	0	0	70	0	0	13	0	0	0
Lane Group Flow (vph)	734	94	0	0	100	8_	260	52	3	0	0	0
Turn Type	Split			Split		Perm	Split		Perm			
Protected Phases	. 2	2		6	6		4	4				
Permitted Phases			_			6			4			
Actuated Green, G (s)	42.5	42.5			8.3	8.3	16.2	16.2	16.2			
Effective Green, g (s)	43.5	43.5			8.3	8.3	16.2	16.2	16.2			
Actuated g/C Ratio	0.54				0.10	0.10	0.20	0.20	0.20			
Clearance Time (s)	5.0	5.0			4.0	4.0	4.0	4.0	4.0			
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1867	880			189	164	358	377	321			
v/s Ratio Prot	c0.21	0.06			c0.05		c0.15	0.03		-		
v/s Ratio Perm						0.01			0.00			
v/c Ratio	0.39	0.11			0.53	0.05	0.73	0.14	0.01			
Uniform Delay, d1	10.6	8.8			34.0	32.3	29.8	26.2	25.5			
Progression Factor	0.39	0.37	·		1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.5	0.2			2.7	0.1	7.2	0.2	0.0			
Delay (s)	4.6	3.4			36.7	32.4	37.0	26.3	25.5			
Level of Service	Α	Α			D	С	D	С	С			
Approach Delay (s)		4.4			34.8			34.7			0.0	
Approach LOS		Α			С			С			Α	
Microscollen Summery	4		la caracter and a section of	and the second		8.1	Agranda da da			· /956 · \	A. Carlo	
HCM Average Control E	Delay		15.4		ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci	ty ratio		0.49									
Actuated Cycle Length	(s)		80.0	S	Sum of l	ost time	(s)		12.0			
Intersection Capacity U	tilization		46.7%	10	CU Leve	el of Sei	vice		Α			
Analysis Period (min)			15						•			
c Critical Lane Group												
									,			

	▶	→	4	•	-	4	
ingineyelk	ER	(ESI)	W.Enr	WER	ં કારો	경비원	
Lane Configurations	, , , , , , , , , , , , , , , , , , , ,	†	†		ሻ	7	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		4.0	4.0		4.0	4.0	
Lane Util. Factor		1.00	1.00		1.00	1.00	
<u>.</u> Frt		1.00	1.00		1.00	0.85	
Flt Protected		1.00	1.00		0.95	1.00	
Satd. Flow (prot)		1863	1863		1770	1583	
Flt Permitted		1.00	1.00		0.95	1.00	
Satd. Flow (perm)		1863	<u> 1863</u>		1770	1583	
Volume (vph)	0	805	262	0	32	623	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	0	894	291	0	36	692	•
RTOR Reduction (vph)	0	0	0	0	0	457	
Lane Group Flow (vph)	0	894	291	0	36	235	
Turn Type		_	_			Perm	
Protected Phases		2	6		4		
Permitted Phases					4 = 0	4	
Actuated Green, G (s)	-	56.2	56.2		15.8	15.8	
Effective Green, g (s)		56.2	56.2		15.8	15.8	
Actuated g/C Ratio		0.70	0.70		0.20	0.20	
Clearance Time (s)		4.0	4.0		4.0	4.0	
Vehicle Extension (s)		3.0	3.0	· · · · · · · · · · · · · · · · · · ·	3.0	3.0	
Lane Grp Cap (vph)		1309	1309	-	350	313	
v/s Ratio Prot		c0.48	0.16		0.02	-0.45	
v/s Ratio Perm		0.00	0.00		0.40	c0.15	
v/c Ratio		0.68	0.22		0.10	0.75	
Uniform Delay, d1		6.8	4.2		26.3	30.2	
Progression Factor		1.00	0.26		1.00	1.00	
Incremental Delay, d2		2.9	0.3 1.4		0.1 26.4	9.5	
Delay (s)		9.7			20.4 C	39.7 D	
Level of Service		A	A 1.4		39.0	U	
Approach Delay (s) Approach LOS		9.7 A	1.4 A		39.0 D		
• •							
Intereseration Summingley		0.883.89	4.41.4.4			والأور والمؤور وبيف الاورد استان	
HCM Average Control D	-		19.6	Н	ICM Le	vel of Se	ervice B
HCM Volume to Capacit			0.70				
Actuated Cycle Length (0.08			ost time	
Intersection Capacity Ut	ilization	1	59.0%	10	CU Levi	el of Ser	vice B
Analysis Period (min)			15				
c Critical Lane Group							

Movement EBI WBI WBI NBI NBI Lane Configurations ↑
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Total Lost time (s) 4.0 4.0 4.0 4.0 Lane Util. Factor 1.00 1.00 1.00 1.00 Frt 0.99 1.00 0.94 Flt Protected 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1850 1770 1863 1699 Flt Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Total Lost time (s) 4.0 4.0 4.0 4.0 Lane Util. Factor 1.00 1.00 1.00 1.00 Frt 0.99 1.00 0.94 Flt Protected 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1850 1770 1863 1699 Flt Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Lane Util. Factor 1.00 1.00 1.00 1.00 Frt 0.99 1.00 1.00 0.94 Flt Protected 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1850 1770 1863 1699 Flt Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Frt 0.99 1.00 1.00 0.94 Flt Protected 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1850 1770 1863 1699 Flt Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Fit Protected 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1850 1770 1863 1699 Fit Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Satd. Flow (prot) 1850 1770 1863 1699 Flt Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Flt Permitted 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Satd. Flow (perm) 1850 1770 1863 1699 Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Volume (vph) 685 37 21 818 103 93 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 761 41 23 909 114 103
Adj. Flow (vph) 761 41 23 909 114 103
RTOR Reduction (yph) 2 0 0 0 49 0
The state of the s
Lane Group Flow (vph) 800 0 23 909 168 0
Turn Type Prot
Protected Phases 4 3 8 2
Permitted Phases
Actuated Green, G (s) 34.6 2.0 40.6 10.4
Effective Green, g (s) 34.6 2.0 40.6 10.4
Actuated g/C Ratio 0.59 0.03 0.69 0.18
Clearance Time (s) 4.0 4.0 4.0
Vehicle Extension (s) 3.0 3.0 3.0
Lane Grp Cap (vph) 1085 60 1282 299
v/s Ratio Prot 0.43 0.01 c0.49 c0.10
v/s Ratio Perm
v/c Ratio 0.74 0.38 0.71 0.56
Uniform Delay, d1 8.9 27.9 5.6 22.2
Progression Factor 1.00 1.00 1.00
incremental Delay, d2 2.6 4.0 1.8 2.4
Delay (s) 11.5 31.9 7.4 24.6
Level of Service B C A C
Approach Delay (s) 11.5 8.0 24.6
Approach LOS B A C
Intersection Sumparery
HCM Average Control Delay 11.3 HCM Level of Service B
HCM Volume to Capacity ratio 0.68
Actuated Cycle Length (s) 59.0 Sum of lost time (s) 8.0
Intersection Capacity Utilization 61.1% ICU Level of Service B
Analysis Period (min) 15
c Critical Lane Group

	۶	-	*	•	-	4	4	†	<i>/</i> *	1	ţ	-√
Vlexemen		्शिक्षा	1 53 8	-\W\E}L	W/BAIW	WER	ANBL.	MENT.	MBR.	ા કાઢા	Sen.	SBR
Lane Configurations	777		7	ሻ	1			414			41	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0			4.0	4.0
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00			0.95			0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.99			0.98			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (prot)	3433	1863	1583	1770	1843			3425			3494	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00			0.99			0.99	1.00
Satd. Flow (perm)	3433	1863	1583	1770	1843			3425			3494	1583
Volume (vph)	140	497	25	37	653	50	152	352	76	101	285	44
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	156	552	28	41	726	56	16 9	391	84	112	317	49
RTOR Reduction (vph)	0	0	15	0	2	0	0	11	0	0	0	0
Lane Group Flow (vph)	156	552	13	41	780	0	0	633	0	0	429	49
Turn Type	Prot		Perm	Prot			Split			Split		Free
Protected Phases	7	4		3	8		2	. 2		6	6	
Permitted Phases			4									Free
Actuated Green, G (s)	7.9	52.9	52.9	3.6	48.6			21.6			14.8	110.9
Effective Green, g (s)	7.9	52.9	52.9	3.6	48.6			22.6			15.8	110.9
Actuated g/C Ratio	0.07	0.48	0.48		0.44	•	-	0.20			0.14	1.00
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0			5.0			5.0	
Vehicle Extension (s)	3.0	.3.0	3.0	3.0	3.0			3.0		-	3.0	•
Lane Grp Cap (vph)	245	889	755	57	808			698			498	1583
v/s Ratio Prot	c0.05	0.30	•	0.02	c0.42		-	c0.18			c0.12	
v/s Ratio Perm			0.01									0.03
v/c Ratio	0.64	0.62	0.02	0.72	0.97	-		0.91	-	-	0.86	0.03
Uniform Delay, d1	50.1	21.5	15.3	53.1	30.3			43.1			46.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	5.3	1.4	0.0	35.1	23.2			15.4			14.2	0.0
Delay (s)	55.4	22.9	15.3	88.2	53.6			58.5			60.7	0.0
Level of Service	Ε	С	В	F	D			E			Ε	Α
Approach Delay (s)		29.5	-		55.3			58.5			54.5	
Approach LOS		С			Ε			E			D	
hiteratedion summing	regeriye			0000	relie of the sec		Compression			12:00:13:44		
HCM Average Control D		ه و راه ۱۵ د ماهندال الت	48.8	-	ICM Lev	el of Se	ervice	land talendar	D	dina di Admirita di America.	أطلتك منات منسانة المثلثة	1010101010
HCM Volume to Capaci	-		0.91				, , , , , ,					
Actuated Cycle Length (-		110.9	ć	Sum of lo	ost time	(s)		16.0			
Intersection Capacity Ut			82.1%		CU Leve				E			
Analysis Period (min)			15						_			
c Critical Lane Group												
F												

	۶	→	•	•	4	4	4	†	<i>></i>	-	1	4
Mpycánieni	ESL	기를 하기 (A		-\\\\\\B <u>\</u> L	WBT	WBR:	NISIE.	- MBIL,		- SI	설립되	SBR
Lane Configurations Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor	1900	45 1900 4.0 0.95	1900	1900	4 1900 4.0 1.00	1900 4.0 1.00	1900	47> 1900 4.0 0.95	1900	1900	4 1900 4.0 1.00	1900 4.0 1.00
Frt Flt Protected Satd. Flow (prot)		0.97 0.98 3384			1.00 1.00 1856	0.85 1.00 1583		0.97 1.00 3432			1.00 0.98 1817	0.85 1.00 1583
FIt Permitted Satd. Flow (perm)		0. 75 2594			0.96 1792	1.00 1583		0.92 3187			0.67 1243	1.00 1583
Volume (vph) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph)	100 0.90 111 0 0	149 0.90 166 27 314	58 0.90 64 0	26 0.90 29 0	331 0.90 368 0 397	539 0.90 599 72 527	58 0.90 64 0	495 0.90 550 19 725	117 0.90 130 0	35 0.90 39 0	35 0.90 39 0 78	83 0.90 92 58 34
Lane Group Flow (vph) Turn Type	Perm	314		Perm	397	Perm	Perm	125	U	Perm		Perm
Protected Phases Permitted Phases	4	4		8	. 8	. 8	2	·. 2		6	6	6
Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s)		21.8 21.8 0.46 4.0			21.8 21.8 0.46 4.0	21.8 21.8 0.46 4.0		17.5 17.5 0.37 4.0			17.5 17.5 0.37 4.0	17.5 17.5 0.37 4.0
Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot		3.0 1196	<u> </u>		3.0 826	730		3.0 1179		•	3.0 460	3.0 586
v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor		0.12 0.26 7.8 1.00			0.22 0.48 8.8 1.00	c0.33 0.72 10.3 1.00		c0.23 0.62 12.2 1.00			0.06 0.17 10.0 1.00	0.02 0.06 9.6 1.00
Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		0.1 7.9 A 7.9 A		,	0.4 9.3 A 12.0 B	3.5 13.8 B		1.0 13.1 B 13.1 B			0.2 10.2 B 9.9	0.0 9.6 A
Intersection Summary HCM Average Control D HCM Volume to Capacit	elay y ratio	Agency / State of Benefit Land	11.6 0.67			vel of Se		Andrew March	В	g dagag t an gi dagag galanggan		
Actuated Cycle Length (Intersection Capacity Ut Analysis Period (min) c Critical Lane Group			47.3 71.4 % 15			ost time el of Sei			8.0 C			

	٠	→	*	•	—	*	1	1	<i>></i>	1		4
Wendeling		기를리!!	ABR.	WBL.	AWIST.	WER	NBE.	ANBI	Mer	SEL	SET	SBR
Lane Configurations	ሻ	4			4			†			†	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0			4.0			4.0	
Lane Util. Factor	0.95	0.95			1.00			1.00			1.00	
Frt	1.00	0.98			0.91			1.00			1.00	
FIt Protected	0.95	0.96			0.98			1.00			1.00	
Satd. Flow (prot)	1681	1658			1669			1863			1863	
Flt Permitted	0.74	0.74			0.89			1.00			1.00	
Satd. Flow (perm)	1310	1281			1508			1863			1863	
Volume (vph)	270	0	25	8	0	15	0	392	0	0	127	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	300	0	28	9	0	17	0	436	0	0	141	0
RTOR Reduction (vph)	0	15	0	0	13	0	0	0	0	0	0	0
Lane Group Flow (vph)	<u> 151</u>	162	0	0	13	0	0	436	0	0	141	0
Turn Type	Perm			Perm	0			•				
Protected Phases		4		•	8			2			6	
Permitted Phases	4	0.7	_	8	0.7	÷	_	04.0			04.0	
Actuated Green, G (s)	9.7	9.7	•		9.7			21.0			21.0	
Effective Green, g (s)	9.7	9.7			9.7			21.0			21.0	
Actuated g/C Ratio	0.25	0.25			0.25			0.54			0.54	
Clearance Time (s)	4.0	4.0	* .		4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	328	321			378			1011			1011	
v/s Ratio Prot		0.40	-					c0.23			0.08	
v/s Ratio Perm	0.12	c0.13			0.01			0.40				
v/c Ratio	0.46	0.50			0.04			0.43			0.14	
Uniform Delay, d1	12.3	12.4			11.0			5.3			4.4	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	1.0	1.3			0.0			0.3			0.1	
Delay (s)	13.3 B	13.7			11.0			5.6			4.4	
Level of Service	В	B 42.5			B			A 5.6			A	
Approach Delay (s)		13.5 B			11.0						4.4	
Approach LOS		G G			В			A			A	
interestion/Summerly	الممتحلي فياحاه والاراف مادي						54 <u>4 8</u>	i. w ment				
HCM Average Control D			8.4		ICM Lev	vel of Se	ervice		Α			
HCM Volume to Capacit	-		0.45									
Actuated Cycle Length (38.7			ost time			8.0			
Intersection Capacity Ut	ilization)	42.2%	1(JU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

-	٠	→	*	•	4 -	*	4	†	<i>></i>	1	↓	4
Moxemie ni	E			WBL!	WBII	-WBR	MBL	ANIBAL.	MBRV	୍ଷ ୍ଟା		YSBR
Lane Configurations		ર્ન		7	↑	_					ર્ની કે	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0						4.0	
Lane Util. Factor		1.00		1.00	1.00						0.95	
Frt		0.94		1.00	1.00						0.99	
Flt Protected		1.00		0.95	1.00						0.98	
Satd. Flow (prot)		1758		1770	1863						3409	
Flt Permitted		1.00		0.95	1.00						0.98	
Satd. Flow (perm)		1758		1770	1863						3409	
Volume (vph)	0	115	83	371	104	0	0	0	0	194	172	36
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	128	92	412	116	0	0	0	0.	216	191	40
RTOR Reduction (vph)	0	33	0	0	0	0	0	0	0	0	9	0
Lane Group Flow (vph)	0_	187	0	412	116	0_	0	0	0	0	438	0
Turn Type Protected Phases		2		Prot 1	6					Split 4	4	
Permitted Phases		2			. 0					4	4	
Actuated Green, G (s)		11.2		17.3	32.5						12.2	
Effective Green, g (s)		11.2		17.3	32.5						12.2	
Actuated g/C Ratio		0.21		0.33	0.62			÷			0.23	
Clearance Time (s)		4.0		4.0	4.0					-	4.0	
Vehicle Extension (s)		3.0		3.0	3.0				-		3.0	
Lane Grp Cap (vph)		374	<u> </u>	581	1149					-	789	
v/s Ratio Prot		c0.11		c0.23	0.06						c0.13	
v/s Ratio Perm		00.11		00.E0	0.00		Ē			•	00,10	
v/c Ratio		0.50		0.71	0.10						0.55	
Uniform Delay, d1		18.3		15.5	4.1						17.9	
Progression Factor		1.00		1.00	1.00						1.00	
Incremental Delay, d2		1.1		4.0	0.0						8.0	
Delay (s)		19.3		19.5	4.2						18.7	
Level of Service		В		В	Α					•	В	
Approach Delay (s)		19.3			16.1			0.0			18.7	
Approach LOS		В			В			Α			В	
yalsınınılığı adlığısının		ON CARLE		Sep. 27.4.	2 15 Alizabe	1433a4		ar in the state of			经 的原则	0. V 5640W
HCM Average Control D			17.7	Н	ICM Lev	vel of Se	ervice		В			Section of the sectio
HCM Volume to Capaci	-		0.61									
Actuated Cycle Length	(s)		52.7			ost time			12.0			
Intersection Capacity Ut	ilization		53.2%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	*	•	←	*	4	†	-	\	1	1
Mtexxemitani	/EBL			: WEIL	WET	WER	NBL	ANEW.	NBR	ୁ ଅଧିକ	`\$! :}	SER
Lane Configurations	44	<u></u>			7>		7	4				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Lane Util. Factor	0.97	1.00			1.00		1.00	1.00			1.00	
Frt	1.00	1.00			0.94		1.00	0.96			0.87	
Flt Protected	0.95	1.00			1.00		0.95	1.00			1.00	
Satd. Flow (prot)	3433	1863			1745		1770	1784			1612	
Flt Permitted	0.95	1.00			1.00		0.59	1.00			1.00	
Satd. Flow (perm)	3433	1863		·	1745		1108	1784			1611	
Volume (vph)	705	17	0	0	29	25	216	25	10	1	0	173
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	783	19	0	0	32	28	240	28	11	1	0	192
RTOR Reduction (vph)	0	0	0	0	23	0	0	8	0	0	142	0
Lane Group Flow (vph)	783	19	0	0	37	0	240	31	0	0_	51_	0
Turn Type	Prot						Perm			Perm		
Protected Phases	5	2			. 6		N 2	8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	18.3	32.0			9.7		14.2	14.2			14.2	
Effective Green, g (s)	18.3	32.0			9.7		14.2	14.2			14.2	
Actuated g/C Ratio	0.34	0.59			0.18		0.26	0.26			0.26	-
Clearance Time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Vehicle Extension (s)	3.0	3.0	<u> </u>		3.0		3.0	3.0	`	· · ·	3.0	
Lane Grp Cap (vph)	1159	1100			312		290	467			422	
v/s Ratio Prot	c0.23	0.01			c0.02			0.02				
v/s Ratio Perm							c0.22				0.03	
v/c Ratio	0.68	0.02			0.12		0.83	0.07			0.12	
Uniform Delay, d1	15.4	4.6			18.7		18.8	15.0			15.2	
Progression Factor	1.00	1.00			1.00		1.00	1.00		•	1.00	
incremental Delay, d2	1.6	0.0			0.2		17.3	0.1			0.1	
Delay (s)	17.0	4.6			18.8		36.2	15.1			15.4	
Level of Service	В	Α			В		D	В			В	
Approach Delay (s)		16.7			18.8			33.2			15.4	
Approach LOS		В			В			С			В	
incassolon Summely		·						C. 1947.				e and Silver
HCM Average Control D		e kilong pilang pangan ka	20.1	H	ICM Lev	vel of So	ervice		С	and the second second	Carried and the second of the second	
HCM Volume to Capacit			0.60									
Actuated Cycle Length (-		54.2	S	um of k	ost time	(s)		12.0			
Intersection Capacity Ut			59.5%			el of Sei			В			
Analysis Period (min)			15									
c Critical Lane Group												
•												

	۶	→	*	•	+	*	4	1	*	1	ţ	4
Movernem.		돌림기		-\\\ <u>\</u> E L	WBT!		ANEN!	AMENI.	NIN.	ংঙ্গাধ্য		SBR
Lane Configurations		†			44			4			4	7
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	4.0
Lane Util. Factor		0.95			0.95			1.00			1.00	1.00
Frt		1.00			1.00			0.88			1.00	0.85
Fit Protected		1.00			1.00			0.99			0.97	1.00
Satd. Flow (prot)		3539			3537			1630			1807	1583
FIt Permitted		1.00			0.94			0.97			0.82	1.00
Satd. Flow (perm)		3539			3336			1592			1521	1583
Volume (vph)	0	838	1	5	357	0	2	0	14	62	38	341
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (yph)	0	931	1	6	397	0	2	0	16	69	42	379
RTOR Reduction (vph)	0	0	0	0	0	0	0	12	0	0	0	244
Lane Group Flow (vph)	0	932	0	0	403	0	0	6	0	0	111	135
Turn Type		0		Perm	•		Perm	0		Perm	. 4	Perm
Protected Phases		2	-		. 6			8			. 4	4
Permitted Phases		47.4		. 6	474		8	0.2		4	9.2	9.2
Actuated Green, G (s)		17.1	e.		17.1 17.1			9.2 9.2			9.2	9.2
Effective Green, g (s)		17.1			0.50			0.27			0.27	0.27
Actuated g/C Ratio		0.50			4.0			4.0			4.0	4.0
Clearance Time (s)		4.0			3.0			3.0			3.0	3.0
Vehicle Extension (s)	<u> </u>	3.0	•					427			408	425
Lane Grp Cap (vph)		1764			1663			421			400	423
v/s Ratio Prot		c0.26		•	0.40			0.00			0.07	c0.09
v/s Ratio Perm		0.50			0.12			0.00			0.07	0.32
v/c Ratio	•	0.53			0.24			0.01 9.2			9.9	10.0
Uniform Delay, d1		5.9			4.9 1.00			1,00			1.00	1.00
Progression Factor		1.00			0.1	•	÷	0.0			0.4	0.4
Incremental Delay, d2		0.3			5.0			9.2			10.3	10.5
Delay (s)		6.1 A			5.0 A			9.2 A			10.3 B	10.5 B
Level of Service		6.1			5.0			9.2			10.4	D
Approach Delay (s)		0. I A			3.0 A			9.2 A			В	
Approach LOS		A									<u>را</u>	(Annabrament)
Dieiseoton Summary		to Management			بالاستخداد فكالأخوار والدعشية		<u> رود محاردا مند فنامند کا در و برو</u>	المراكستان والمتعادر والراف	<u> </u>	arta in die Merca des	ومنق سندقس	Armana da d
HCM Average Control D	•		7.1	F	TOW LE	vel of S	et vice		Α			
HCM Volume to Capaci			0.45	,	م مدا	a=4 tin==	(0)		9.0			
Actuated Cycle Length		_	34.3			ost time el of Se			8.0			
Intersection Capacity U	unzation	1	44.5%	·	CO Lev	ei 0i 26	VICE		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	*	√	4	4	4	<u></u>	<i>></i>	-		-√
Movementi	EZ POL	(EB)		W/EJL	AWASAI"	WBR.	AN BIL	HXIEN	NBR∙	(SE)	SH	SB R
Lane Configurations	1,4	1→			4	7	7	↑	7	_		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	0.97	1.00			1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.90			1.00	0.85	1.00	1.00	0.85			
Fit Protected	0.95 3433	1.00 1679			0.97 1814	1.00 1583	0.95 1770	1.00 1863	1.00 1583			
Satd. Flow (prot) Flt Permitted	0.95	1.00			0.97	1.00	0.95	1.00	1.00			
	3433	1679			1814	1583	1770	1863	1583			
Satd. Flow (perm)	723	1079	202	24	21	31	142	37				
Volume (vph)	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	49 0.90	0	0	0
Peak-hour factor, PHF	803	116	224	27	23	34	158	41	0.90 54	0.90 0	0.90 0	0.90 0
Adj. Flow (vph) RTOR Reduction (vph)	003	55	0	0	23	31	0	0	45	0	0	0
Lane Group Flow (vph)	803	285	0	0	50	3	158	41	9	0	0	0
Turn Type	Split			Split		Perm	Split		Perm	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u>_</u>
Protected Phases	2	. 2		6	6		4	4				
Permitted Phases						6			4			
Actuated Green, G (s)	47.8	47.8			6.5	6.5	12.7	12.7	12.7			
Effective Green, g (s)	48.8	48.8			6.5	6.5	12.7	12.7	12.7			
Actuated g/C Ratio	0.61	0.61			0.08	0.08	0.16	0.16	0.16			
Clearance Time (s)	5.0	5.0	•		4.0	4.0	4.0	4.0	4.0			
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0	_		
Lane Grp Cap (vph)	2094	1024			147	129	281	296	251	_		
v/s Ratio Prot	c0,23	0.17			c0.03		c0.09	0.02				
v/s Ratio Perm						0.00			0.01			
v/c Ratio	0.38	0.28			0.34	0.02	0.56	0.14	0.03			
Uniform Delay, d1	7.9	7.3			34.7	33.8	31.1	28.9	28.5			
Progression Factor	0.56	0.40			1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.3	0.4			1.4	0.1	2.6	0.2	0.1			
Delay (s)	4.8	3.4			36.1	33.9	33.6	29.2	28.5			
Level of Service	Α	Α			D	С	С	С	С			
Approach Delay (s)		4.4			35.2			31.8			0.0	
Approach LOS		Α			D			С			Α	
Weiseyiou anuweny		j verili (1) Zastralija	Se remain a se	San	Section Control of the		o est office and a Ma	and the second second		No assistante de la color		and the second second
HCM Average Control D	-		10.8	ŀ	CM Le	vel of Se	ervice		В			
HCM Volume to Capacit			0.41									
Actuated Cycle Length (s)			80.0					12.0				
Intersection Capacity Ut	ilization	,	41.8%	JC	JU Lev	el of Sei	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶		←	*	-	1		
Movement	· 개립원[-		WBT	WBR		(83 8)		
Lane Configurations		†	*		ሻ	7	The second section of the second second section is a second section of the section of the section of the second section is a second section of the second section of the second section is a second section of the second section is a second section of the section of the second section is a second section of the second section of the second section is a second section of the second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the second section is a second section of the second section of the second section is a second section of the second section section is a second section of the second section section is a second section of the second section secti	-
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		4.0	4.0		4.0	4.0		
Lane Util. Factor		1.00	1.00		1.00	1.00		
Frt		1.00	1.00		1.00	0.85		
FIt Protected		1.00	1.00		0.95	1.00		
Satd. Flow (prot)		1863	1863		1770	1583		
FIt Permitted		1.00	1.00		0.95	1.00		
Satd. Flow (perm)		1863	1863		1770	1583		
Volume (vph)	0	971	160	0	122	654		_
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	0	1079	178	0	136	727		
RTOR Reduction (vph)	0	0	0	0	0	605		
Lane Group Flow (vph)	0	1079	178	0	136	122		
Turn Type						Perm		_
Protected Phases		2	6		4		,	
Permitted Phases						4		
Actuated Green, G (s)		58.6	58.6		13.4	13.4	•	
Effective Green, g (s)		58.6	58.6		13.4	13.4		
Actuated g/C Ratio		0.73	0.73		0.17	0.17		
Clearance Time (s)		4.0	4.0		4.0	4.0		
Vehicle Extension (s)		3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)		1365	1365		296	265		
v/s Ratio Prot		c0.58	0.10		0.08			
v/s Ratio Perm						c0.08		
v/c Ratio		0.79	0.13		0.46	0.46		
Uniform Delay, d1		6.8	3.2		30.0	30.0		
Progression Factor		1.00	0.14	÷	1.00	1.00	·	
Incremental Delay, d2		4.7	0.2		1.1	1.3		
Delay (s)		11.5	0.6		31.2	31.3		
Level of Service		В	Α		С	С		
Approach Delay (s)		11.5	0.6		31.3			
Approach LOS		В	Α		С			
lnicasteoidon Surranteny		in the second			7. a - 7.0			
HCM Average Control D	elay	<u> </u>	18.7		ICM Lev	vel of Se	ervice B	_
HCM Volume to Capacit	y ratio		0.73		•		·	
Actuated Cycle Length (s)		80.0	S	um of k	ost time	(s) 8.0	
Intersection Capacity Uti	lization	ļ	64.5%			el of Ser		
Analysis Period (min)			15					
c Critical Lane Group								

	-	*	1	←	4	<i>(</i> ***			
(negrically	EST		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-VMENI'	- NEL	WER.			
Lane Configurations	4		7	^	¥γ				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	4.0		4.0	4.0	4.0				
Lane Util. Factor	1.00		1.00	1.00	1.00				
Frt	0.99		1.00	1.00	0.94				
Flt Protected	1.00		0.95	1.00	0.97				
Satd. Flow (prot)	1844		1770	1863	1708				
Flt Permitted	1.00		0.95	1.00	0.97				
Satd. Flow (perm)	1844		1770	1863	1708			-	
Volume (vph)	913	74	55	738	65	47			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	1014	82	61	820	72	52			
RTOR Reduction (vph)	2	0	0	0	25	0			
Lane Group Flow (vph)	1094	0	61	820	99	0			
Turn Type			Prot						
Protected Phases	4	÷	3	8	2		•		
Permitted Phases									
Actuated Green, G (s)	69.7	. :	5.5	79.2	10.9				•
Effective Green, g (s)	69.7		5.5	79.2	10.9				
Actuated g/C Ratio	0.71		0.06		0.11				
Clearance Time (s)	4.0		4.0	4.0	4.0				
Vehicle Extension (s)	3.0	<u> </u>	3.0	3.0	3.0				·
Lane Grp Cap (vph)	1310		99	1504	190				
v/s Ratio Prot	c0.59		0.03	c0.44	c0.06				
v/s Ratio Perm									
v/c Ratio	0.84		0.62	0.55	0.52				
Uniform Delay, d1	10.1		45.3	3.3	41.1				
Progression Factor	1.00		1.00	1.00	1.00		-		
Incremental Delay, d2	4.8		10.9	0.4	2.6				
Delay (s)	14.9		56.1	3.7	43.7				
Level of Service	В		E	_ A	D				
Approach Delay (s)	14.9			7.3	43.7				
Approach LOS	В			Α	D				
hindristandhan Summery									
HCM Average Control D			13.4	H	ICM Lev	vel of Service		В	
HCM Volume to Capacit	-		0.79			_			
Actuated Cycle Length (98.1	s	ium of k	ost time (s)	12	2.0	
Intersection Capacity Ut	ilization		65.7%			el of Service		С	
Analysis Period (min)			15						
c Critical Lane Group									

Movement BBI BBI WBI WBI WBI NBI NBI NBI SBI SBR Lane Configurations Ideal Flow (vphpl) 1900
Ideal Flow (vphpl) 1900
Total Lost time (s) 4.0
Lane Util. Factor 0.97 1.00 1.00 1.00 1.00 0.95 0.95 1.00 Frt 1.00 1.00 0.85 1.00 0.99 0.98 1.00 0.85 Flt Protected 0.95 1.00 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (prot) 3433 1863 1583 1770 1848 3444 3508 1583 Flt Permitted 0.95 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (perm) 3433 1863 1583 1770 1848 3444 3508 1583 Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
Frt 1.00 1.00 0.85 1.00 0.99 0.98 1.00 0.85 Flt Protected 0.95 1.00 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (prot) 3433 1863 1583 1770 1848 3444 3508 1583 Flt Permitted 0.95 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (perm) 3433 1863 1583 1770 1848 3444 3508 1583 Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
Flt Protected 0.95 1.00 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (prot) 3433 1863 1583 1770 1848 3444 3508 1583 Flt Permitted 0.95 1.00 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (perm) 3433 1863 1583 1770 1848 3444 3508 1583 Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
Satd. Flow (prot) 3433 1863 1583 1770 1848 3444 3508 1583 Flt Permitted 0.95 1.00 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (perm) 3433 1863 1583 1770 1848 3444 3508 1583 Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
Fit Permitted 0.95 1.00 1.00 0.95 1.00 0.99 0.99 1.00 Satd. Flow (perm) 3433 1863 1583 1770 1848 3444 3508 1583 Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
Satd. Flow (perm) 3433 1863 1583 1770 1848 3444 3508 1583 Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
Volume (vph) 213 747 227 39 534 31 148 431 68 90 413 221
() /
Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9
. 11
Adj. Flow (vph) 237 830 252 43 593 34 164 479 76 100 459 246
RTOR Reduction (vph) 0 0 101 0 2 0 0 8 0 0 0
Lane Group Flow (vph) 237 830 151 43 625 0 0 711 0 0 559 246
Turn Type Prot Perm Prot Split Split Free
Protected Phases 7 4 3 8 2 2 6 6
Permitted Phases 4 Free
Actuated Green, G (s) 10.6 53.1 53.1 3.1 45.6 24.1 19.1 117.4
Effective Green, g (s) 10.6 53.1 53.1 3.1 45.6 25.1 20.1 117.4
Actuated g/C Ratio 0.09 0.45 0.45 0.03 0.39 0.21 0.17 1.00
Clearance Time (s) 4.0 4.0 4.0 4.0 5.0 5.0
Vehicle Extension (s) 3.0 3.0 3.0 3.0
Lane Grp Cap (vph) 310 843 716 47 718 736 601 1583
v/s Ratio Prot c0.07 c0.45 0.02 0.34 c0.21 c0.16
v/s Ratio Perm 0.10 0.16
v/c Ratio 0.76 0.98 0.21 0.91 0.87 0.97 0.93 0.16
Uniform Delay, d1 52.2 31.7 19.5 57.0 33.2 45.7 48.0 0.0
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Incremental Delay, d2 10.7 27.0 0.1 98.6 11.2 24.9 21.2 0.2
Delay (s) 62.9 58.7 19.6 155.6 44.4 70.6 69.1 0.2
Level of Service E E B F D E E A
Approach Delay (s) 52.0 51.5 70.6 48.1
Approach LOS D D E D
Intercation Summery
HCM Average Control Delay 54.8 HCM Level of Service D
HCM Volume to Capacity ratio 0.97
Actuated Cycle Length (s) 117.4 Sum of lost time (s) 16.0
Intersection Capacity Utilization 88.4% ICU Level of Service E
Analysis Period (min) 15
c Critical Lane Group

	•	-	*	•	4	•	4	†	/	\		4
<u>Moxementi</u>	문라	멸제		W/BIL?	-wan-	W/BR		SINENIS	- ANIBIR		SBIT	SBR
Lane Configurations		€1 }			4	7		र्सी			4	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Util. Factor		0.95			1.00	1.00		0.95			1.00	1.00
Frt		0.98			1.00	0.85		0.95			1.00	0.85
Flt Protected		1.00			1.00	1.00		0.99			0.97	1.00
Satd. Flow (prot)		3441			1858	1583		3319			1806	1583
Flt Permitted		0.90			0.95	1.00		0.89			0.58	1.00
Satd. Flow (perm)		3115			1766	1583	444	2966			1080	1583
Volume (vph)	54	449	93	14	241	219	114	325	251	47	28	137
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	60	499 19	103 0	16 0	268 0	243 149	127 0	361 97	279 0	52 0	31 0	152 90
RTOR Reduction (vph) Lane Group Flow (vph)	0 0	643	0	0	284	94	0	670	0	0	83	62
Turn Type	Perm	043		Perm	204	Perm	Perm	070		Perm	03	Perm
Protected Phases	1 01111	4			8.		. 01111	2		· Om	6	, 0,,,,
Permitted Phases	4	•		8	•	8	2	_		6	Ū	6
Actuated Green, G (s)		13.8			13.8	13.8	-	14.6	•		14.6	14.6
Effective Green, g (s)		14.8	•		14.8	14.8		15.6			15.6	15.6
Actuated g/C Ratio	-	0.39			0.39	0.39		0.41			0.41	0.41
Clearance Time (s)		5.0			5.0	5.0		5.0			5.0	5.0
Vehicle Extension (s)		3.0			3.0	3.0		3.0			3.0	3.0
Lane Grp Cap (vph)		1201			681	610		1205			439	643
v/s Ratio Prot												
v/s Ratio Perm		c0.21			0.16	0.06		c0.23			0.08	0.04
v/c Ratio		0.54			0.42	0.15		0.56			0.19	0.10
Uniform Delay, d1		9.1			8.6	7.7		8.7			7.3	7.0
Progression Factor		1.00			1.00	1.00		1.00			1.00	1.00
Incremental Delay, d2		0.5			0.4	0.1		0.6			0.2	0.1
Delay (s)		9.6			9.1	7.8		9.3			7.5	7.1
Level of Service		A 9.6			A 8.5	Α		A 9.3			A	Α
Approach Delay (s) Approach LOS		9.0 A			0.5 A			9.3 A			7.3 A	
		^			^			^			^	
ntersection Summary	22 E E E E E E E											
HCM Average Control D	-		9.0	ŀ	ICIVI Le	vel of Se	ervice		Α			
HCM Volume to Capaci	-		0.55 38.4	c	um of l	oot timo	(0)		9.0			
Actuated Cycle Length (Intersection Capacity Ut		•	68.2%			ost time el of Sei			8.0 C			
Analysis Period (min)	unizatiOli	1	15	10	SO FEA	51 01 001	VICE		C			
c Critical Lane Group			, ,									
5 5 1 1 5 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C												

	٨	-	*	1	4	4	4	†	<i>/</i> *	1	+	4
Moveline iii		(EB)	TENR!	W.B.L.	(WBN)	WER.	ANBIL	MBIL	MER	ଞ୍ଚା		SBR
Lane Configurations	ሻ	44+			4			†			†	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0			4.0			4.0	
Lane Util. Factor	0.95	0.95			1.00			1.00			1.00	
Frt	1.00	0.99			0.89			1.00			1.00	
Flt Protected	0.95	0.95			0.99			1.00			1.00	
Satd. Flow (prot)	1681	1679			1642			1863			1863	
Fit Permitted	0.73	0.71	•		0.93			1.00			1.00	
Satd. Flow (perm)	1295	1241			1544			1863			1863	<u></u>
Volume (vph)	435	0	8	6	0	29	0	234	0	0	129	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	483	0	9	7	0	32	0	260	0	0	143	0
RTOR Reduction (vph)	0	3	0	0	22	0	0	0	0	0	0	0
Lane Group Flow (vph)	242	247	0	0	17_	0	0	260	0	0	143	0
Turn Type	Perm	4		Perm	0			2			0	
Protected Phases	4	4		۵	8			2			6	
Permitted Phases	4	40.0		8	10.2			13.7			40.7	
Actuated Green, G (s)	10.2 10.2	10.2 10.2			10.2 10.2			13.7			13.7 13.7	
Effective Green, g (s)	0.32	0.32			0.32			0.43			0.43	
Actuated g/C Ratio Clearance Time (s)	4.0	4.0			4.0		•	4.0		-	4.0	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	414	397	-		494		·	800			800	···-
v/s Ratio Prot	414	391			434			c0.14			0.08	
v/s Ratio Perm	0.19	c0.20			0.01			CO. 14			0.00	
v/c Ratio	0.13	0.62			0.03			0.32			0.18	•
Uniform Delay, d1	9.1	9.2			7.5			6.0			5.6	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	2.1	3.0			0.0			0.2			0.1	
Delay (s)	11.2	12.2			7.5			6.3			5.7	
Level of Service	В	В			A			A			A	
Approach Delay (s)	_	11.7			7.5			6.3			5.7	
Approach LOS		В			A			Α			A	
haterstabler Strangersky	(1913) 16 8/6	dromanni e	\$40.75%\}\del	e la company (表数的影響	e Charles (Carlot	Market States	res 185 center.	2000 0 To 6	O Marine	Marie America	PANADONA A
HCM Average Control D	770	a para di Para di Para	9.1		ICM Lev	el of Se	ervice	and the state of t	<u> </u>	Paragraphia application	de la comita del comita de la comita del la comita del la comita del la comita de la comita del la co	
HCM Volume to Capacit			0.45	•		. 5, 5, 5						
Actuated Cycle Length (31.9	S	Sum of le	ost time	(s)		8.0			
Intersection Capacity Ut		1	37.9%			el of Ser			A			
Analysis Period (min)			15									
c Critical Lane Group												
			15									

1

	•	-	•	•	←	•	1	Ť	/	-	↓	4
Momental	- E 8		실립없	W.B.L.	WEIL	WER	KBL.	MMENTS	WER.		(S)	SBR
Lane Configurations		1→		¥	↑		=:				4T>	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0						4.0	
Lane Util. Factor		1.00		1.00	1.00		•				0.95	
Frt		0.96		1.00	1.00						0.98	
Flt Protected		1.00		0.95	1.00						0.97	
Satd. Flow (prot)		1795		1770	1863						3365	
Fit Permitted		1.00		0.95	1.00						0.97	
Satd. Flow (perm)		1795		1770	1863						3365	
Volume (vph)	0	124	46	320	168	0	0	0	0	464	188	100
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	138	51	356	187	0	0	0	-0	516	209	111
RTOR Reduction (vph)	0	17	0	0	0	0	0	0	0	0	15	0
Lane Group Flow (vph)	0	172	0	356	187	0	0	0	0	0	821	0
Turn Type				Prot						Split		<u></u>
Protected Phases		2		1	6			_	_	4	4	
Permitted Phases												
Actuated Green, G (s)		11.2	-	16.7	31.9	•					19.5	
Effective Green, g (s)		11.2		16.7	31.9						19.5	
Actuated g/C Ratio		0.19		0.28	0.54						0.33	
Clearance Time (s)		4.0		4.0	4.0					,	4.0	
Vehicle Extension (s)		3.0		- 3.0	3.0						3.0	
Lane Grp Cap (vph)		338		498	1001						1105	
v/s Ratio Prot		c0.10		c0.20	0.10						c0.24	
v/s Ratio Perm												-
v/c Ratio		0.51		0.71	0.19				-		0.88dl	
Uniform Delay, d1		21.6		19.2	7.1						17.7	
Progression Factor		1.00		1.00	1.00						1.00	
Incremental Delay, d2		1.2		4.8	0.1						2.7	
Delay (s)		22.8		24.0	7.2						20.5	
Level of Service		С		С	A						C	
Approach Delay (s)		22.8			18.2			0.0			20.5	
Approach LOS		С			В			Α			С	
lateraccion Surannery	36. N. Sakir			95 97 LA	e dan	hald si visiki	67463.9X					(Z.M.)
HCM Average Control D		Section with Edward The	20.0	F	ICM Lev	el of Se	rvice		В		عور والمعقدة المديد التات	
HCM Volume to Capacit			0.68									
Actuated Cycle Length (59.4	S	Sum of lo	ost time	(s)		12.0			
Intersection Capacity Ut		ı	62.8%			el of Sen			В			
			4-									

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

15

Analysis Period (min)

c Critical Lane Group

	٠		*	•	-	*	4	†	<i>></i>	\	↓	4
Vlovejja::a(WEL	:WETI	WH:	NEL	NATE) TE	MER.		SPT	SBR
Lane Configurations	16.54	↑					ሻ	7>			4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Lane Util. Factor	0.97	1.00			1.00		1.00	1.00		•	1.00	
Frt	1.00	1.00			0.94		1.00	0.96			0.87	
FIt Protected	0.95	1.00			1.00	•	0.95	1.00			1.00	
Satd. Flow (prot)	3433	1863			1753		1770	1779			1619	
FIt Permitted	0.95	1.00			1.00		0.71	1.00			0.99	
Satd. Flow (perm)	3433	1863			1753		1325	1779			1611	
Volume (vph)	519	41	0	0	24	19	314	44	19	3	0	60
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	577	46	0	0	27	21	349	49	21	3	0	67
RTOR Reduction (vph)	0	0	0	0	18	0	0	14	0	0	45	0
Lane Group Flow (vph)	577	46	0	0	30	0	349	56	. 0	0	25	0
Turn Type	Prot				_		Perm			Perm	- "	
Protected Phases	5	. 2			6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	13.8	26.0			8.2		17.1	17.1		÷	17.1	
Effective Green, g (s)	13.8	26.0			8.2		17.1	17.1			17.1	
Actuated g/C Ratio	0.27	0.51		-	0.16		0.33	0.33		-	0.33	
Clearance Time (s)	4.0	4.0			4.0		4.0	4.0			4.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)	927	948			281		443	595			539	
v/s Ratio Prot	c0.17	0.02			c0.02			0.03				
v/s Ratio Perm							c0.26				0.02	
v/c Ratio	0.62	0.05			0.11		0.79	0.09			0.05	
Uniform Delay, d1	16.4	6.3			18.3		15.4	11.7			11.5	
Progression Factor	1.00	1.00			1.00		1.00	1.00			1.00	
Incremental Delay, d2	1.3	0.0			0.2		9.0	0.1			0.0	
Delay (s)	17.7	6.3			18.5		24.4	11.7			11.5	
Level of Service	В	Α			В		С	В			В	
Approach Delay (s)		16.8			18.5			22.2		,	11.5	
Approach LOS		В			В			С			₿	
Menseridon Sunninghy			regions.									
HCM Average Control D	Pelay		18.5	H	ICM Le	vel of So	ervice		В			
HCM Volume to Capacit	ty ratio	,	0.59									
Actuated Cycle Length ((s)		51.1	S	Sum of le	ost time	(s)		12.0			
Intersection Capacity Ut	ilization		52.2%	10	CU Leve	el of Sei	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	-	•	•	←	*	4	†	<i>></i>	\	ļ	1
Mexemplani.			(12(8)원)	AWASIL.	W/BT	WBR		NET	NER	(કીક)[_		SBR
Lane Configurations Ideal Flow (vphpl)	1900	∱‡ 1900	1900	1900	4↑ 1900	1900	1900	4 1900	1900	1900	4 1900	7 7 1900
Total Lost time (s)		4.0			4.0 0.95			4.0			4.0	4.0
Lane Util. Factor Frt		0.95 1.00			1.00			1.00 0.90			1.00 1.00	1.00 0.85
Flt Protected		1.00			1.00			0.99			0.97	1.00
Satd. Flow (prot)		3538	•		3536			1650			1805	1583
Flt Permitted		1.00			0.94			0.93		ė.	0.79	1.00
Satd. Flow (perm)		3538			3336			1560	-		1478	1583
Volume (vph)	0	590	2	5	301	0	. 5	0	18	203	117	598
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	656	2	6	334	0	6	0	20	226	130	664
RTOR Reduction (vph)	0	0	0	0	0	0	0	10	0	0	0	109
Lane Group Flow (vph)	0	658	0	0 Perm	340	0	0	16	0	0	356	555
Turn Type Protected Phases		2		Pelin	6		Perm	. 8		Perm	4	Perm
Permitted Phases		2		6	ŭ		8	. 0		4	4	4
Actuated Green, G (s)		12.7	-	Ū	12.7		J	19.4		7	19.4	19.4
Effective Green, g (s)		12.7			12.7			19.4			19.4	19.4
Actuated g/C Ratio	-	0.32	-		0.32			0.48			0.48	0.48
Clearance Time (s)		4.0			4.0			4.0			4.0	4.0
Vehicle Extension (s)		3.0			3.0			3.0			3.0	3.0
Lane Grp Cap (vph)		1121			1057			755			715	766
v/s Ratio Prot		c0.19			0.40			0.04		3		
v/s Ratio Perm		0.50			0.10			0.01			0.24	c0.35
v/c Ratio		0.59 11.5		•	0.32 10.4			0.02			0.50 7.0	0.72 8.2
Uniform Delay, d1 Progression Factor		1.00			1.00			5.4 1.00			1.00	1.00
Incremental Delay, d2		0.8			0.2			0.0			0.5	3.4
Delay (s)		12.3			10.6			5.4			7.6	11.6
Level of Service		В			В			Α			Α	В
Approach Delay (s)		12.3			10.6			5.4			10.2	
Approach LOS		В			В			Α			В	
Intereservitori Sulininglis		44			1			111		A Commence of the Commence of		
HCM Average Control D			10.9	ŀ	ICM Le	vel of S	ervice		В			
HCM Volume to Capacit			0.67	_					.= .			
Actuated Cycle Length (40.1		Sum of k				8.0			
Intersection Capacity Ut	ııızatıon		58.8% 15	. 16	CU Leve	ei ot Sei	rvice		В			
Analysis Period (min) c Critical Lane Group			15									
Contical Lane Group												

APPENDIX E: PROJECT COST ESTIMATES

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTIONS 1, 2 LEONA QUARRY

13-Jul-06

OAKLAND, CALIFORNIA

			Unit	
Description	Quantity	Unit	Price	Amount
,	<u> </u>			
I-580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EAST	BOUND OFF	RAMP/ ED	WARDS AVE	
<u>IMPROVEMENTS</u>				
Improvements				
Burckhalter Park driveway construction	1	LS	\$55,638	\$55,638
Interchange modification construction	1	LS	\$747,928	\$747,928
TOTAL				\$803,566
DESIGN ENGINEEDING				\$110 DDD
				\$110,900
FEES PAID TO CITY				\$46,841
TOTAL (rounded to nearest \$100)				\$961,300
	I-580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EAST IMPROVEMENTS Improvements Burckhalter Park driveway construction Interchange modification construction TOTAL DESIGN ENGINEERING FEES PAID TO CITY	I-580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EASTBOUND OFF IMPROVEMENTS Improvements Burckhalter Park driveway construction 1 Interchange modification construction 1 TOTAL DESIGN ENGINEERING FEES PAID TO CITY	I-580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EASTBOUND OFF RAMP/ ED IMPROVEMENTS Improvements Burckhalter Park driveway construction 1 LS Interchange modification construction 1 LS TOTAL DESIGN ENGINEERING FEES PAID TO CITY	Description Quantity Unit Price -580 WESTBOUND ON-RAMP/ EDWARDS AVE, I-580 EASTBOUND OFF RAMP/ EDWARDS AVE -580 WESTBOUND ON-RAMP/ EDWARDS AVE IMPROVEMENTS -580 WESTBOUND OFF RAMP/ EDWARDS AVE -

Note:

- 1. Actual construction cost and design engineering cost provided by David Chapman, DeSilva Group.
- 2. Actual fees paid for inspection, permits, plan review, etc. provided by Marcel Uzegbu, City of Oakland.

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 4 LEONA QUARRY OAKLAND, CALIFORNIA

13-Jul-06

Updated: 7/13/2006

ltem_	Description	Quantity	<u>Unit</u>	Unit Price	Amount
	EDWARDS AVE./GREENLY DR.				·-
	IMPROVEMENTS				
	Improvements				
1	Construction	1	LS	\$77,605	\$77,605
	тот	AL .			\$77,605
	DESIGN ENGINEERI	NG			\$14,100
	FEES PAID TO C	ITY			\$16,127
	TOTAL (rounded to nearest \$10	00)			\$107,800

Note:

^{1.} Actual construction cost and design engineering cost provided by David Chapman, DeSilva Group.

^{2.} Actual fees for inspection, permits, plan review, etc. provided by Marcel Uzegbu, City of Oakland.

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 6

16-Feb-06

LEONA QUARRYOAKLAND, CALIFORNIA

Item	Description	Quantity	Unit	Unit Price	Amount
item	Description	Quantity	OINT -	11100	Amount
	73rd AVE./MacARTHUR BLVD./FOOTHILL BLVD.				
	IMPROVEMENTS				
	Street Work				
1	Saw Cut	250	LF	\$5	\$1,250
2	AC/AB Pavement (6" AC/30" AB)	2,200	SF	\$35	\$77,000
3	Median Curb	220	LF	\$25	\$5,500
4	Miscellaneous Improvements/Utility Relocation	1	LS	\$11,300	\$11,300
5	Landscaping	1	LS	\$25,000	\$25,000
6	Water Meter (relocate)	1	ĒΑ	\$11,300	\$11,300
7	HC Ramps	3	EA	\$2,900	\$8,700
8	Signing/Striping	1	LS	\$25,000	\$25,000
9	Remove curb and gutter	220	LF	\$20	\$4,400
10	Remove tree	6	EA	\$900	\$5,400
	Subtotal				\$174,850
					*
	Signalization				
11	Modify Traffic Signal	1	LS	\$135,600	\$135,600
12	Interconnect	600	LF	\$25	\$15,000
	Subtotal				\$150,600
	TOTAL				\$325,450

Project:	73rd/MacA	rthur F	PRELIMINARY PROJECT ESTIMATE lvd/Foothill Blvd #6	Estimate by:	M. Uzegbu
1 10,000	, 5, 6, 11, 45, 11		7. C.	Date Estimated	5/4/2006
Project No.:	P27710			Checked by:	
		E s	ESTIMATED CONSTRUCTION COST	To the second of	\$ 325,45
		CONSTRUCTI ON COSTS	Contingency	25.0%	\$ 81,36
		E 2	Inspection	9.0%	\$ 29,29
		Ž Z	Construction Services (Survey and Testing)	2.0%	\$ 6,50
	Č	ŏ	ីមុខមានប្រ ៤ ម៉ោង[ក្សាធ្វើរងរស់ម៉ែស្រាប្រជាជនម៉ែន	36.0%	89 (9)(3)(6)(
			DESIGN COST		
			Engineering studies(traffic studies)	3.0%	\$ 13,27
			Environmental studies	3.0%	\$ 13,27
	Ţ	DSG	Design/Engineering	15.0%	\$ 66,39
			Constructibility Plan Review Cost	5.0%	\$ 22,13
			TOTAL DESIGN COST	26.0%	\$ 115,07
	2		ADMINISTRATION		
	ADMINISTRATIV	E COSTS	Project Management (Administration, bidding etc)	8.0%	\$ 35,40
	Siz	00	Printing/Duplication/Advertising/Postage	0.5%	\$ 2,21
	M	ш	Other Agencies Permit (PGE power)	0.5%	\$ 2,21
	A		Contract Compliance	3.0%	\$ 13,27
			Ti(c)tiZNLANōLNHML35tlqVAlitML5(CLo)35tf38	11210%	ં કાલુકા
		TOTALS	SUB TOTAL PROJECT COST	不可能够够完全 。	\$ 610,80
		OT	Project Contingency	10.0%	\$ 11,50
			TOTAL PROJECT COST:		\$ 622,31

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 7

06-Jan-06

LEONA QUARRY

OAKLAND, CALIFORNIA

Item	Description		Quantity	Unit	Unit Price	Amount
	Description		duantity	01111	11100	Amount
	MOUNTAIN BLVD./KELLER AVE.					
	IMPROVEMENTS					
	Improvements					
1	Miscellaneous Improvements/Utility Relocation		1	LS	\$11,300	\$11,300
2	Signing/Striping		1	LS	\$21,000	\$21,000
3	HC Ramps		4	EA	\$2,900	\$11,600
		Subtotal				\$43,900
	Signalization					
4	Traffic Signal		2	LŞ	\$180,800	\$361,600
5	Interconnect		1,000	LF	\$25	\$25,000
		Subtotal				\$386,600
		TOTAL				\$430,500

		PRELIMINARY PROJECT ESTIMATE		
Project:	Mountain Blvd/l	Keller Avenue #7	Estimate by:	-
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
	Es	ESTIMATED CONSTRUCTION COST		\$ 430,5
	3UG ST	Contingency	25.0%	\$ 107,6
	CONSTRUCTI ON COSTS	Inspection	9.0%	\$ 38,
	N N	Construction Services (Survey and Testing)	2.0%	\$ 8,6
	ö	ำแปนสมา ต่างเพาะและเป็นสมาชาการมีเรื่อ	36.0%	.gg) /stagagr
	l	DESIGN COST		,
		Engineering studies(traffic studies)	3.0%	\$ 17,
	<u> </u>	Environmental studies	3.0%	\$ 17,
	DSG		15.0%	<u>\$</u> 87,
		Constructibility Plan Review Cost	5.0%	\$ 29,
	ļ	TOTAL DESIGN COST	26.0%	\$ 152,
	2	ADMINISTRATION		
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc)	8.0%	 \$ 46,
	NIS	Printing/Duplication/Advertising/Postage	0.5%	\$ 2,
	M III	Other Agencies Permit9eg. PGE power)	0.5%	\$ 2,
	ΑΓ	Contract Compliance	3.0%	\$ 17,
		TRODUCKI AND HISTORY WILLIAM (CLOSSIFS)	1122,00%.	7/10/
		SUB TOTAL PROJECT COST	TO OFFICE OF	[\$
		Project Contingency	10.0%	\$ 15,
		TOTAL PROJECT COST:		\$ 823,1

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 8 LEONA QUARRY

16-Feb-06

OAKLAND, CALIFORNIA

				Unit		
Item	Description	Quantity	Unit	Price	Amount	
	I-580 WESTBOUND OFF-RAMP/MOUNTAIN BLVD.					
	IMPROVEMENTS					
	Improvements					
1	Construction	1	LS	\$212,385	\$212,385	
	TOTAL	-			\$212,385	

Note:

1. Actual construction cost (based on bids received) provided by David Chapman, DeSilva Group.

Project:	I-580 Westbour	nd off-ramp/Mountain Blvd/Shone # 8	Estimate by:	M. Uzegbu
	, 000 11001000.	on tamprinostitati. Errorono ir o	Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
	Eg	ESTIMATED CONSTRUCTION COST		\$ 22.22.
	CONSTRUCTI	Contingency	25.0%	\$ 53,
	E S	Inspection	9.0%_	\$ 19,
	NO C	Construction Services (Survey and Testing)		\$ 6,
	8 8	મુલ્લો/સુર્ક (હોલીસ) સમિશકો માહાના અને વાલીસીનું કો	37.0%	ि <u>प्रशि</u>
		DESIGN COST	<u> </u>	
	\$	Engineering studies(traffic studies)	3.0%	\$ 8,
	J	Environmental studies	3.0%	\$ 8,
	DSG	Design/Engineering	15.0%	\$ 43,
		Constructibility Plan Review Cost	5.0%	\$ 14,
		TOTAL DESIGN COST	26.0%	\$ 75,
	A L	ADMINISTRATION		
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc.)	8.0%	\$ 23,
	SE S	Printing/Duplication/Advertising/Postage	0.5%	\$ 1,
	E	Other Agencies Permit eg. PGE Power)	0.5%	\$ 1.
	₹	Contract Compliance		\$ 8,
		inOurn), Anony Herristic Exercitives (Croxistis)	12.10%	(M)
		SUB TOTAL PROJECT COST		\$ 401,
		Project Contingency TOTAL PROJECT COST:		\$ 7,

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 9

16-Feb-06

LEONA QUARRYOAKLAND, CALIFORNIA

Item	Description		Quantity	Unit	Unit Price	Amount
	I-580 EASTBOUND OFF-RAMP/KELLER AVE.					
	<u>IMPROVEMENTS</u>					
	Improvements		•			
1	Miscellaneous Improvements/Utility Relocation		1	LS	\$11,300	\$11,300
2	HC Ramps		4	EA	\$2,900	\$11,600
3	Signing/Striping		1	LS	\$13,000	\$13,000
		Subtotal				\$35,900
	Signalization					
4	Traffic Signal		1	LS	\$180,800	\$180,800
		Subtotal				\$180,800
		TOTAL				\$216,700

7111 OI OAI	VEAND PUBLIC	WORKS AGENCY / ENGINEERING DESIGN AN PRELIMINARY PROJECT ESTIMATE	ID RIGHT-OF-W	AY MANAGEMENT
Project:	Eastbound Off-F	Ramp/Keller Avenue # 9	Estimate by:	M. Uzegbu
			Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	
	Eφ	ESTIMATED CONSTRUCTION COST		\$ 216,70
	CONSTRUCTI	Contingency	25.0%	\$ 54,1
	∯ S	Inspection	9.0%	\$ 19,5
	NO S	Construction Services (Survey and Testing)	2.0%	\$ 4,3
	80	meditali etolkkililikuletinoistetojens	36.0%	[15] 2 [5]
		DESIGN COST		····
		Engineering studies(traffic studies)	3.0%	\$ 8,8
	İ	Environmental studies	3.0%	\$ 8,8
	DSG	Design/Engineering	15.0%	\$ 44,2
		Constructibility Plan Review Cost	5.0%	\$ 14,7
		TOTAL DESIGN COST	26.0%	\$ 76,6
	≥	ADMINISTRATION		
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc.)	7.0%	\$ 20,6
	AIS CO	Printing/Duplication/Advertising/Postage		\$ 1,4
	MIT	Other Agencies Permit(PGE power etc)	0.5%	\$ 1,4
	AD	Contract Compliance		\$ 8,8
		MOTTAY, AVMINISHISHISHANIMAS (COORTIS		[6] (St.)
	TOTALS	SUB TOTAL PROJECT COST		 \$403,7
	017	Project Contingency		\$ 7,6
	×	TOTAL PROJECT COST:		\$ 411,4

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 16

17-Jan-06

LEONA QUARRY

OAKLAND, CALIFORNIA

ltem	Description	Quantity	Unit	Unit Price	Amount
	2000 Pilot	- Garriery		11100	Allouit
	I-580 WESTBOUND OFF-RAMP/KUHNLE AVE./MOUN	ITAIN BLVD.			
	IMPROVEMENTS				
	Street Work				
1	Saw Cut	300	LF	\$5	\$1,500
2	AC/AB (6" AC/30" AB)	1,200	SF	\$35	\$42,000
3	Curb and Gutter	300	LF	\$21	\$6,300
4	Miscellaneous Improvements/Utility Relocation	1	LS	\$116,700	\$116,700
5	HC Ramps	4	EA	\$2,900	\$11,600
8	Signing/Striping	1	LS	\$22,000	\$22,000
	Sub	total			\$200,100
	Signalization				
7	Traffic Signal	1	LS	\$180,800	\$180,800
8	Interconnect	600	LF	\$25	\$15,000
	Sub	total			\$195,800
	то	TAL			\$395,900

Dun!4.	L COO Washington	PRELIMINARY PROJECT ESTIMATE	Entire de Jaco	Ad Hanning
Project:	1.560 Westbouri	d off.ramp/Kunle Avenue/Mountain Blvd #16	Estimate by:	
Duele et Ne	P27710		Date Estimated	5/4/2006
Project No.:	P2//IU		Checked by:	
	Εs	ESTIMATED CONSTRUCTION COST	2. 44. 7	\$%240 80 395
	CONSTRUCTI ON COSTS	Contingency	25.0%	\$ 98
	# S	Inspection	9.0%	\$ 35
	NO NO	Construction Services (Survey and Testing)	2.0%	\$ 7
	ຮັບ	मस्क्रीम/नम् (exol)श्चनातीक्रममुद्दानीस्मान्द्रश्चाहरू	36.0%	(S) (S) (S)
			- .	
		j		
		DESIGN COST		
			0.00/	Γ _Φ 40
		Engineering studies(traffic studies) Environmental studies	3.0% 3.0%	\$ 16 \$ 16
	DSG			
	DSG	Design/Engineering Constructibility Plan Review Cost	15.0%	\$ 80 \$ 26
		TOTAL DESIGN COST	5.0% 26.0%	\$ 200 (\$ 139
	1		20.070	Lite of the delication
	<u>≥</u>	ADMINISTRATION		
	ADMINISTRATIV E COSTS	Project Management (Administration, bidding etc)	8.0%	\$ 43.
	SIN	Printing/Duplication/Advertising/Postage	0.5%	\$ 2
	E III	Other Agencies Permit		\$ 2
	ΑĒ	Contract Compliance		\$ 16
		iikom/zw. /wp MMxW =5m;wasihwa- (Crox3m's)	1/2/10/9/-	(3 <u>/1)</u>
		SUB TOTAL PROJECT COST	Colored Barba	 \$4,5746
		The first of the control of the cont	pro 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
		Project Contingency	10.0%	\$ 13

PRELIMINARY ENGINEER'S ESTIMATE TRAFFIC INTERSECTION IMPROVEMENTS - INTERSECTION 18

06-Jan-06

LEONA QUARRY

OAKLAND, CALIFORNIA

Item	Description	Quantity	Unit	Unit Price	Amount
	1-580 EASTBOUND OFF-RAMP/SEMINARY AVE./OVERI	DALE AVE.			
1 2	Street Work Miscellaneous Improvements/Utility Relocation Signing/Striping	1 1	LS LS	\$11,300 \$15,000	\$11,300 \$15,000
	Subtot	tal			\$26,300
3 4	Signalization Traffic Signal Interconnect	1	LS LS	\$180,800 \$11,300	\$180,800 \$11,300
	Subtot	tal			\$192,100
	ATOT	AL			\$218,400

Project:	L590 paethound	off.ramp/Seminary Avenue/Overdale Ave #18	Estimate by:	M. Uzegbu
Project.	1.000 eastbourid	on ramp/seminary Avenue/Overdale Ave #16	Date Estimated	5/4/2006
Project No.:	P27710		Checked by:	51-412-000
				<u> </u>
	CONSTRUCTI ON COSTS	類型できる ESTIMATED CONSTRUCTION COST	and the first of	\$- : \ S \ \ 218
	3.UC	Contingency	25.0%	\$ 54
	STF	Inspection	9.0%	\$ 19
	NO N	Construction Services (Survey and Testing)	2.0%	\$ 4
	20	าสองสอบ สอากุมรูปและเบื้อโปเดมส์ (ขาง)รภิเริ่ม	36.0%	(f) 249)//
			i	
,				
		DESIGN COST		
	Ì	Engineering studies(traffic studies)	3.0%	\$ 8
		Environmental studies	3.0%	\$ 8
	DSG	Design/Engineering	15.0%	\$ 44
		Constructibility Plan Review Cost	5.0%	\$ 14
		TOTAL DESIGN COST	26.0%	\$ 注题 美國語的 77
	<u></u>	ADMINISTRATION		
	ADMINISTRATIO N COSTS	Project Management (administration, bidding etc)	8.0%	\$ 23
	S S	Printing/Duplication/Advertising/Postage		\$ 1
	N N	Other Agencies Permit (PGE power)	0.5%	\$ 1
	AD	Contract Compliance		\$ B
		TRODIZAVI ZAVENAMESTIRVATIMALE (CLOSSIUS)	112:0%	(6)5
		William to the Carlot Old Total Dec 1707 Con-	a characteristics	\$ 409
		SUB TOTAL PROJECT COST	10.00/	
		Project Contingency TOTAL PROJECT COST:	10.0%	\$ 7, \$ 417,0
		は高いできる。これは、高級などのは、これでは、これでは、これでは、これには、これには、これには、自然などのは、これには、これには、これには、これには、これには、これには、これには、これに	- 大学の「大学のないない。」 では、「大学のないない。」 では、「大学のないない。」 では、「大学のないないない。」 では、「大学のないないないない。」 では、「大学のないないないない。」 では、「大学のないないないないない。」 では、「大学のないないないないない。」 では、「大学のないないないないない。」 では、「大学のないないないないないない。」 では、「大学のないないないないないないない。」 では、「大学のないないないないないないないないないないないないないないないない。」 では、「大学のないないないないないないないないないないないないないないないないないないない	AND HELDINGS ALL